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Abstract: This paper presents the hardware implementation of a neural network controller for a 
nonlinear system with a micro-controller unit (MCU) and a field programmable gate array 
(FPGA) chip. As an on-line learning algorithm of a neural network, the reference compensation 
technique has been implemented on an MCU, while PID controllers with other functions such as 
counters and PWM generators are implemented on an FPGA chip. Interface between an MCU 
and a field programmable gate array (FPGA) chip has been developed to complete hardware 
implementation of a neural controller. The developed neural control hardware has been tested for 
balancing the inverted pendulum while controlling a desired trajectory of a cart as a nonlinear 
system. 
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1. INTRODUCTION 
 
PID controllers are still predominantly used in the 

industry for most motion control applications, because 
of their simplicity, real-time control capability, easy 
implementation, and cost effectiveness. PID control-
lers, however, may not work properly if system 
parameters change or outer disturbances are present. 
In addition, PID controllers for nonlinear systems do 
not work as expected due to the fact that fixed-
controller gains have lack of flexibility to deal with 
nonlinear effects. 

To remedy this defect of PID controllers, many 
control algorithms have been presented. The adaptive 
control method has been used to tune PID controller 
gains against system parameter variations. The robust 
control method has been used to reject disturbances. 
Advanced control theories have been well developed 
to tackle system uncertainties, and although they may 
solve problems associated with the PID controller, 
they require system dynamic models to derive the 
adaptive control laws and the robust control laws. An 
added challenge is that the required system dynamic 
models are often unavailable or hard to obtain.  

Recently, intelligent control methods have been 
widely used and are gradually being accepted in 

motion control industries as well as control system 
communities. A merit of intelligent control methods is 
that they do not require a system model. They 
gradually adapt and learn if system parameter 
variations and disturbances exist. Intelligent tools, 
such as neural network, genetic algorithms, or fuzzy 
logic, can be applied on their own or by fusing two or 
more tools to improve overall performance. Many 
successful control applications to the nonlinear system, 
such as an inverted pendulum system, have been 
presented in the literature [1-7]. 

For a nonlinear system, a neural network is a good 
choice as a nonlinear controller, and works quite well 
by compensating for unknown uncertainties [8]. 
Successful neural network applications can be found 
in such control systems as, controlling robot 
manipulators, as a highly nonlinear, multi-input, 
multi-output (MIMO) system [9,10], and inverted 
pendulum systems, as a single-input, multi-output 
(SIMO) system [11,12]. 

Although the neural network can be used quite 
successfully for nonlinear systems, problems can 
occur due to a real-time implementation issue of an 
extensive-computing requirement of neural network 
learning algorithm. With the help of the DSP hardware 
technologies, successful real-time neural network 
applications have become feasible. A typical neural 
network application example has been conducted to 
control a two degrees-of-freedom inverted pendulum 
system [12]. 

To make the cost-effective intelligent controller, we 
have developed intelligent control hardware by 
combining an embedded controller on a Field 
Programmable Gate Array (FPGA) and a low cost 
DSP board for general purpose. The DSP board is, 
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however, expensive compared to microprocessors, and 
have the speed and computing power required to 
handle neural network learning algorithm [13].  

In this article, we implement a neural network 
control algorithm in a microcontroller unit (MCU) to 
achieve cost-effectiveness. An FPGA chip is designed 
for embedded-PID controllers, by using a very high 
speed integrated circuit hardware description language 
(VHDL). Combining an FPGA chip and an MCU 
forms the low-cost intelligent neural network 
controller. Recently, in the control system industry, the 
concept of a controller-on-chip has been expanded, 
and FGPA chips have been widely used in many 
control applications [14-16]. 

Using the high capacity of an FPGA chip, the 
additional hardware such as an encoder counter and a 
pulse-width-modulation (PWM) generator, can also be 
embedded into a single FPGA chip. As a result, cost 
effectiveness and space-saving benefits can be 
achieved. 

To show the performance of the developed 
intelligent controller, an inverted pendulum system is 
tested. The controller is required to control the 
balance of the pendulum and the position tracking of 
the cart simultaneously.  

 
2. OVERALL SYSTEM STRUCTURE 

 
The overall control block diagram is shown in Fig. 

1. A neural network is placed in front of the closed 
loop controlled system, functioning as a pre-filter to 
modify reference trajectories [9]. The system is 
controlled by a main controller such as a PD, PI, or 
PID controller. Neural network is added as an 
auxiliary controller to compensate for uncertainties in 
the system. This method is known as the reference 
compensation technique (RCT) which is one of the 
on-line learning control methods in neural network 
control applications. One typical structural merit of 
this control method is that the neural compensating 
block can be separated physically from the controlled 
system, and connected by wireless communication.  

Fig. 1 describes how the compensating signal from 
neural network is added to the output error.  

,e r y φ= − +     (1) 

where φ  is a neural network output.  
Then the compensated error e is multiplied by a 

feedback controller gain. The learning signal v is 
designed to make the output error converge to zero. 
Selecting the learning signal is the key issue in on-line 
learning control applications, and leads to the 
definition of different control structures [9,10]. One of 
the simplest ways of selecting the learning signal is 
the output error. 

.v r y= −     (2) 

The PID controller is used as a main controller, and 
embedded into an FPGA chip. The neural network 
control algorithm is embedded on the MCU. Fig. 2 
shows the hardware block diagram structure of the 
interfacing between each module of the intelligent 
controller. The MCU board communicates with the 
FPGA to synchronize the data flow. The MCU gives 
compensated signals to the FPGA chip, and the FPGA 
adds those compensated signals to output errors. PID 
controllers generate control input signals, which are 
then converted into PWM signals to drive DC motors. 

 
3. EMBEDDED PID CONTROLLER 

 
3.1. Overall structure 

The embedded PID controller on an FPGA chip 
consists of a communication block, an encoder 
counter block, a PID calculation block, and a PWM 
generation block. Fig. 3 shows the block diagram 
inside the PID controller. Input signals to the PID 
controller are a 32 bit data bus, a 6 bit address bus, 
control signals such as CS, OE, WE, encoder signals, 
and a 25MHz clock. Output signals are PWM signals. 
Encoder measurement signals are counted and 
compared with desired values, and the errors are 
formed. Errors are used in PID control calculation, 
and PID controller output generates PWM signals to 
the motor drivers. The PID controllers are imple-

 

Fig. 1. Reference compensation control structure. 
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Fig. 3. Block diagram of an embedded PID controller.

 

Fig. 2. Overall control structure block diagram. 
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mented in an FPGA chip containing 300,000 gates. 
The actual schematic design of the controller is shown 
in Fig. 4. PID motion controller design is programmed 
by Quartus II 2.0. 

 
3.2. Communication block 

The communication block receives PID gains and 
desired trajectory from the MCU, and then transfers 
encoded data from the controller to an MCU 
whenever it is needed. Data write, from an MCU to 
the motion controller, includes PID gains, 
enable/disable signals and the motion controller reset. 
Data read, from the motion controller to an MCU, is 
to read encoder data. Since the size of the encoder 
data is 16 bit, high and low bytes should be read 
separately. 

 
3.3. Motor control block 

Fig. 5 shows the motor control block. It consists of 
an encoder counter block, a PID controller block, and 
a PWM generator block. The clock synchronizes the 
process between each module. The trigger signal is 
generated at each 1 kHz sampling time. The trigger 
signal is sent to the encoder counter block and the PID 
controller block and synchronizes the process of each 
block. The block takes PID gains, a clock, a trigger 
signal, encoder signals and a reset signal as input, and 
PWM signals and encoder counter values as output. 

 
3.4. Encoder counter block 

The counter block counts and determines the 
direction of motor rotation from encoder signals. The 
block diagram is shown in Fig. 6. Differences in phase 
A and phase B determine the direction of rotation. 
Noise from a mechanical system can be filtered out by 

a digital filter. Every trigger signal is able to generate 
counter values. 16 bits of the counter, limits the range 
of the movements. 

 
3.5. PID controller block 

The controller block receives encoder data from the 
encoder counter block. It then compares the data with 
the desired values to generate positional errors and 
generate PID control torque. PID control equations are 

 

Fig. 4. Schematic design of PID controller. 
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( ) ( ) ( ) { ( ) ( 1)},p i dn K e n K s n K e n e nτ = + + − −  (3) 

where ( )nτ  is control input, ( )e n  is error, ,pK  

,i dK K  are PID gains, and 

( )
( ) ( ) ( )

( ) ,

i i

i i

i i

s e n s
s n e n s e n s

s e n s

 >
= − ≤ ≤
 − < −

∑
∑ ∑

∑
  (4) 

where is  is a threshold value. 
 

4. NEURAL NETWORK CONTROL 
ALGORITHM 

 
4.1. Reference compensation technique 

In this paper, we are presenting an on-line learning 
algorithm for neural network. The idea of the RCT is 
that the neural network compensates at the input level, 
to modify input signals for minimizing output errors. 
The same objective function of the feedback error 
learning method is minimized in on-line fashion 
[9,10]. 

The angle error of the pendulum is formed as 

,deθ θ θ= −     (5) 

where dθ  is a desired angle, and θ  is an actual 
angle. 
A PID controller for an angle control is defined as 

1 2 3

( ) ( ) ( )

,
P i d

P d i

u k e t k e t dt k e t

k k k
θ θ θθ θ θ θ

θ θ θφ φ φ

= + +

+ + +
∫  (6) 

where 1 2 3, ,φ φ φ  are neural network outputs. The 
cart position is controlled, as well as the pendulum 
angle. The position tracking error is formed as 

,x de x x= −     (7) 

where ,dx x  are the desired cart position and actual 

cart position, respectively. A PID controller for a cart 
can be formed as 

4 5 6

( ) ( ) ( )

,

x x x xPx ix dx

ix dx px

u k e t k e t dt k e t

k k kφ φ φ

= + +

+ + +
∫   (8) 

where 4 5 6, ,φ φ φ  are neural network outputs. The 
overall control input for the inverted pendulum system 
is 

.xu u uθ= +     (9) 

Fig. 7 shows the control block diagram for an 
inverted pendulum system. 

 
4.2. Neural network learning algorithm 

For a neural network structure, we have used a 
general feed-forward structure that has an input layer, 
a hidden layer, and an output layer. Inputs to neural 
network are the delayed values of an angle error and a 
position error with the desired values of the angle and 
the position.  

The numbers of an input layer neuron, a hidden 
layer neuron, and an output layer neuron are 12, 9, 
and 6 respectively as shown in Fig. 8. For a nonlinear 
function at a hidden layer and an output layer, we 
have used a hyperbolic tangent function, shown as 

 1 exp( )( ) .
1 exp( )

xf x
x

− −
=

+ −
   (10) 

Here, the neural network learning algorithm is derived. 
Since we are doing on-line learning and control, the 
selection of the learning signal is quite important. 
Minimizing the training signal makes the output error 
converge to zero. Neural network outputs are defined 
as a sum of compensating signals. 

 ,xθΦ = Φ +Φ     (11) 

where 

1 2 3,p d ik k kθ θ θ θφ φ φΦ = + +  

 

 

Fig. 7. Neural network control for an inverted 
pendulum system. 

 

 
Fig. 8. Neural network structure. 
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4 5 6.x px dx ixk k kφ φ φΦ = + +  

If ( , , )f θ θ θ  is assumed to be a system dynamics, 
(11) can be represented below. 

( , , , , , ) .

p d i px x dx x ix xk e k e k e k e k e k e

f x x x

θ θ θ θ θ θ

θ θ θ

+ + + + +

= −Φ

∫ ∫ (12) 

If the left side of (12) becomes zero, then 
( , , ).f θ θ θΦ ≅  This means that inverse dynamics 

control of the dynamical system can be achieved. 
So here, we define the learning signal of neural 
network as the PID controller output. 

 
.

p d i px x

dx x ix x

v k e k e k e dt k e

k e k e dt

θ θ θ θ θ θ= + + +

+ +

∫
∫

 (13) 

The objective function is defined as a positive 
constant. 

 21 .
2

E v=     (14) 

Differentiating (14) with respect to the neural network 
weights, we have 

 .E E v vv v
w v w w w
∂ ∂ ∂ ∂ ∂Φ

= = = −
∂ ∂ ∂ ∂ ∂

  (15) 

Here, we have 

 ( ).xE v v
w w w w

θ∂Φ ∂Φ∂ ∂Φ
= − = − +

∂ ∂ ∂ ∂
  (16) 

The update equation in the back-propagation 
algorithm [17] is 

 ( ) ( 1),w t v w t
w

η α∂Φ
∆ = + ∆ −

∂
  (17) 

 ( 1) ( ) ( ),w t w t w t+ = + ∆    (18) 

where η  is the learning rate and α  is the 
momentum coefficient. 
 
4.3. Hardware implementation of a neural network 

controller 
A commercially available advanced RISC micro-
processor board (ARM), manufactured by Samsung is 
used for a neural network controller implementation. 
The ARM board has a 32 bit, 66 MHz RISC 
structured microprocessor. In order for an ARM board 
to communicate with embedded PID controllers on 
the FPGA, a 32 bit data bus is used to share data.  

At every sampling time, the ARM board must give 
compensating values to the FPGA, so that the FPGA 
can add those values to output errors to form PID 

controllers. This kind of process can be done, within 
one sample time, by a communication module 
between the MCU and the FPGA. 

Fig. 9 shows a real figure of the embedded 
controller, consisting of an MCU, an FPGA, and a 
motor driver. 

 
5. EXPERIMENTS 

 
5.1. Experimental setup 

Experiments are conducted to control the angle of 
pendulum and the position of cart, simultaneously. Fig. 
10 shows the experimental setup of the inverted 
pendulum system. The system consists of an inverted 
pendulum, an embedded hardware controller, and a 
PC. 

 
5.2. Pendulum balancing control 

We have found that the maximum sampling time 
for on-line learning and control can be achieved at 10 
ms. This sampling rate is much slower than that of a 
DSP board, and although the ARM board is fast 
enough, computing back-propagation learning 
algorithm can be a burden. 

For control applications, however, 10ms sampling 
time is acceptable. First, PID controllers are tested to 
balance the pendulum without moving the cart. As 
expected [13], PID controllers can balance the 
pendulum while the cart position continues to move, 
which means that position of the cart is not controlled. 

Next experiment is to add a neural network 

 
Fig. 9. MCU-FPGA intelligent control hardware. 

 
 

 
Fig. 10. Inverted pendulum system. 
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controller. Figs. 11 and 12 show the pendulum angle 
error and cart position error controlled by the 
controller, respectively. The pendulum is well 
maintained at balance. Peaks occur if disturbances are 
present by intentionally hitting the pendulum. 

 
5.3. Cart position control 

The cart is required to track a desired sinusoidal 
trajectory while balancing the pendulum. The cart is 
required to move along x axis a distance of 
approximately 40cm. PID controllers are tested, but 
fail.  

To improve the tracking performance of the cart, 
the estimation of velocity should be filtered. Here we 
tested two cases, one is with a digital filter being used, 
and the other is not. The filter is used to smooth the 
approximated velocity value obtained from the 
numerical calculation. 

1) Case 1: Without a digital filter 
We have found that derivative terms in the PID 

controller, after approximation by a finite difference 
computation, are quite noisy. Although simultaneous 
pendulum balancing and position tracking control 

tasks are successful, vibration is observed. Fig. 13 
shows the performance of the balancing pendulum. 
The pendulum is well maintained, and the angle error 

Fig. 11. Angle of the pendulum. 
 
 

Fig. 12. Position of the cart. 

Fig. 13. Case 1: Pendulum angle of a sinusoidal 
trajectory tracking task when T = sec8π .  

 

Fig. 14. Case 1: Position tracking of the cart of a 
sinusoidal trajectory tracking task, when T =

sec8π . 
 

Fig. 15. Case 1: Control torque of a sinusoidal 
trajectory tracking task, when T = sec8π . 
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is less than 0.01 radian.  
Fig. 14 shows the tracking performance of the cart 

while balancing the pendulum. The period of the 
sinusoidal trajectory is about 25 seconds. We observed 
that an overshoot of about 3 cm occurred in cart 
position tracking. To minimize the overshoot, the 
smoothing filter is used. Fig. 15 shows the 
corresponding torque, with glitches causing vibration. 
To eliminate vibration, we used a digital filter. 

2) Case 2: With a digital filter 
We use a digital filter for smoothing the signal after 

a finite difference process. We have experimentally 
found the vibrating frequency at around 5Hz. So we 
filter derivative terms out with a low pass filter at the 
cutoff frequency of 5 Hz. The 2nd order IIR filter is 
designed, 

1 2

1 2
0.75596 0.511922 0.7559611( ) .

1 0.45445 0.572398
z zH z

z z

− −

− −
+ +

=
+ +

 

The results are shown in Fig. 16. We can see that 

the performance results are much better than those 
without a filter. Specifically, for the cart position 
tracking, overshoots have been minimized, as shown 
in Fig. 17. We can clearly see from Fig. 18 that torque 
is much smoother than that of case 1. In these 
experiments, the pendulum is balanced within a 0.015 
radian angle error, and the cart tracks desired 
trajectories within the error of 1 cm. 

 
6. CONCLUSION 

 
This paper presents the hardware implementation of 

a neural network controller, by combining an 
embedded-PID controller and an MCU board. The 
controller was tested by performing control of an 
inverted pendulum system. Although the overall 
sampling time is slower than that of a DSP, the 
controller successfully balances the pendulum, while 
controlling the cart position tracking. The pendulum is 
balanced within a 0.015 radian angle error, and the 
cart tracks desired trajectories within the error of 1 cm. 

The motivation for combining an MCU and a low 
level FPGA, was cost effectiveness. Implementing 
neural network on a single FPGA is very difficult, and 
requires expensive hardware for the larger size FPGA 
chips required for on-line back-propagation learning 
algorithm.  

For future research, a PID controller and neural 
network can be embedded in a single FPGA chip. 
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