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Abstract: In this paper, we introduce a new topology of Self-Organizing Polynomial Neural 
Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss 
its comprehensive design methodology involving mechanisms of genetic optimization. Let us 
recall that the design of the “conventional” SOPNN uses the extended Group Method of Data 
Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of 
input nodes at polynomial neurons (or nodes) located in each layer. However, this design 
process does not guarantee that the conventional SOPNN generated through learning results in 
optimal network architecture. The design procedure applied in the construction of each layer of 
the SOPNN deals with its structural optimization involving the selection of preferred nodes (or 
PNs) with specific local characteristics (such as the number of input variables, the order of the 
polynomials, and input variables) and addresses specific aspects of parametric optimization. An 
aggregate performance index with a weighting factor is proposed in order to achieve a sound 
balance between the approximation and generalization (predictive) abilities of the model. To 
evaluate the performance of the GA-based SOPNN, the model is experimented using pH 
neutralization process data as well as sewage treatment process data. A comparative analysis 
indicates that the proposed SOPNN is the model having higher accuracy as well as more superb 
predictive capability than other intelligent models presented previously. 
 
Keywords: Aggregate objective function, design procedure, GA-based SOPNN, Genetic 
Algorithms (GAs), Group Method of Data Handling (GMDH), Polynomial Neuron (PN), Self-
Organizing Polynomial Neural Networks (SOPNN).  
 

1. INTRODUCTION 

Recently, much attention has been directed towards 
the advanced techniques of system modeling. The 
panoply of existing methodologies and ensuing 
detailed algorithms are confronted with nonlinear 
systems, extreme problem dimensionality, a quest for 
high accuracy and generalization capabilities of the 
ensuing models. 

When the complexity of the system to be modeled 
increases, experimental data as well as some degree of 

prior domain knowledge (conveyed by the model 
developer) are essential to the completion of an 
efficient design procedure. 

It is also worth stressing that the nonlinear form of 
the model acts as a two-edged sword: while we gain 
flexibility to cope with experimental data, we are 
provided with an abundance of nonlinear 
dependencies that need to be exploited in a systematic 
manner. In particular, when dealing with high-order 
nonlinear and multivariable equations of the model, 
we require a vast amount of data necessary for 
estimating its complete range of parameters [1,2]. 

To help alleviate such problems, one of the first 
approaches along systematic design of nonlinear 
relationships between system’s inputs and outputs 
comes into play, known as the Group Method of Data 
Handling (GMDH). GMDH was developed in the late 
1960s by Ivakhnenko [3-6] as a vehicle for identifying 
nonlinear relations between input and output variables. 
While providing a useful systematic design procedure, 
GMDH also has some drawbacks. First, it tends to 
generate quite complex polynomials for relatively 
simple systems (data). Second, owing to its limited 
generic structure (quadratic two-variable polynomial), 
GMDH also tends to produce an overly complex 
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network (model) when it comes to highly nonlinear 
systems. Third, if there are less than three input 
variables, the GMDH algorithm does not generate a 
highly versatile structure.  

To alleviate the problems associated with the 
GMDH, Self-Organizing Polynomial Neural 
Networks (SOPNN) were introduced by Oh et al. [7-
9] as a new class of networks. In a nutshell, these 
networks come with a high level of flexibility as each 
node (processing element forming a PD (or PN)) can 
have a different number of input variables as well as 
exploit a different order of the polynomials (linear, 
quadratic, cubic, etc.). Although the SOPNN contains 
flexible model architecture with higher accuracy due 
to its systematic design procedure, it is difficult to 
obtain a structurally and parametrically optimized 
network because of the limited design of polynomial 
neurons (PNs) located in each layer of SOPNN. 
Accordingly, the SOPNN algorithm tends to produce 
overly complex networks as well as a repetitive 
computational load by the trial and error method 
and/or a repetitive parameter adjustment by the 
designer, as in the case of the original GMDH 
algorithm.  

In this study, in solving the problems with the 
conventional SOPNN as well as the GMDH algorithm, 
we introduce a new design approach of GA-based 
SOPNN. Optimal design parameters available within 
the PN (viz. the number of input variables, the order 
of the polynomials, and input variables) lead to a 
structurally and parametrically optimized network, 
which is more flexible as well as simpler in 
architecture than the conventional SOPNN. 
Furthermore, we introduce an aggregate objective 
function that deals with training data and testing data, 
and elaborate on its optimization to produce a 
meaningful balance between approximation and 
generalization abilities of the model. In a nutshell, the 
objective of this study is to develop a general design 
methodology of GA-based SOPNN modeling, come 
up with a logic-based structure for such a model and 
propose a comprehensive evolutionary development 
environment in which the optimization of the models 
can be efficiently carried out both at the structural as 
well as at the parametric level [10]. 

To evaluate the performance of the proposed model, 
we exploit pH neutralization process data [19-26] as 
well as sewage treatment process data [15-18].  
 

2. THE SOPNN ALGORITHM AND ITS 
GENERIC ARCHITECTURE 

2.1. SOPNN algorithm 
The SOPNN algorithm [7-9] is based on the 

GMDH method and utilizes a class of polynomials 
such as linear, quadratic, and modified quadratic (refer 
to Table 1). By choosing the most significant input 

variables and a certain order of the polynomials 
among the available variety of structures at our 
disposal, we can construct the best partial description 
(PD) as polynomial neuron (PN). The individual PNs 
are expressed as a second-order regression equation.  
In particular, when combining two inputs at each node 
as the generic structure we arrive at the following 
relationship; 

2 2
i j i j i jy A BX CX DX EX FX X= + + + + + .   (1) 

In the above expression, A, B, C, D, E, and F are 
parameters of the model, while y is the output of this 
model; Xi and Xj denote two inputs. 

The outputs obtained from each of these nodes are 
then combined to obtain a higher-degree polynomial. 
In this case, a complex polynomial is formed (referred 
to as an Ivakhnenko polynomial). This function 
usually takes on the form 

1 1 1

n n n

i i ij i j
i i j

y A B X C X X
= = =

= + +∑ ∑∑  

1 1 1
,

n n n

ijk i j k
i j k

D X X X
= = =

+∑∑∑ "  (2) 

where Xi, Xj and Xk are the nodal input variables, and y 
is the output of an individual neuron (node). A, Bi, Cij, 
and Dijk are the coefficients of the Ivakhnenko 
polynomial. 

The SOPNN design activities have focused over the 
past years on the development of self-organizing, 
minimal polynomial networks with good generation 
capabilities. Searching for the optimal configuration in 
the space of all possible polynomial neural networks 
is intractable and requires the application of certain 
heuristic rules. The SOPNN leads to self-organizing 
heuristic hierarchical models of high degree equipped 
with an automatic elimination of undesirable variable 
interactions.  

 
2.2. SOPNN architecture 

The SOPNN based on the perceptron learning 
principle with neural network-type architecture is used 
to model the input-output relationship of a complex 
process system. The design of the SOPNN structure 
continues and involves the generation of some 
additional layers. Each layer consists of nodes (PDs or 
PNs) for which the number of input variables could be 
the same as in the previous layers or may differ across 
the network. At each layer, new generations of 
complex equations are constructed from simple forms. 
The model obtained at each layer is progressively 
more complex than the model at the preceding layers. 
To avoid an overfit, the overall data set is divided into 
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a) the training set, which is used for the generation of 
several computing alternative models and b) the 
testing set, which is used to test the accuracy of each 
model generated and for the selection of the best 
models at each layer. The number of layers is 
increased until the newer models begin to exhibit 
weaker predictability than their predecessors. This 
indicates overfitting of the model. The final model is 
defined as a function of two, three, or four variables. 
The network result is a very sophisticated model 
obtained from a very limited data set. 

We introduce two types of generic SOPNN 
structures, namely the basic and the modified SOPNN. 
Moreover, for each type of topology we identify two 
schemes [7-9]. The modified SOPNN architectures are 
shown in Fig. 1. In what follows, the SOPNN emerges  
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Fig. 2. Overall structural optimization process of 

SOPNN using Gas. 

as a versatile architecture whose topology depends on 
the regression polynomial of a PN. 
 

3. GENETIC OPTIMIZATION OF SOPNN 

When we construct the PNs of each layer in the 
conventional SOPNN, such parameters as the number 
of input variables (nodes), the order of polynomials, 
and input variables available within a PN are fixed 
(selected) in advance by the designer. That is, the 
designer must have pre-determined information 
related to networks such as the number of system 
input variables and the polynomial order. Because the 
conventional SOPNN is a heuristic method, it does not 
guarantee that the constructed SOPNN is an optimal 
network architecture. Accordingly, in order to generate 
a structurally and parametrically optimized SOPNN 
network, such parameters need to be optimal. 

In order to solve this problem, we use genetic 
algorithms that are a stochastic global search 
technique based on the principles of evolution, natural 
selection and genetic recombination by simulating 
“survival of the fittest” in a population of potential 
solutions (individuals) to the problem at hand [11-14]. 

In this study, for the optimization of the SOPNN 
model, GAs use the serial method of binary type, 
roulette-wheel in the selection operator, one-point 
crossover in the crossover operator, and invert in the 
mutation operator. As the roulette-wheel operator’s 
stochastic characteristic, when creating new 
population of new generation by selection operator, 
we will choose the best chromosome from the last 
generation. To reduce the stochastic errors of roulette-
wheel selection, we use elitist strategy [13]. The 
overall structural optimization process of SOPNN 
using GAs is shown in Fig. 2. 
 

4. GA-BASED SOPNN ALGORITHM 

The framework of the design procedure of the Self-
Organizing Polynomial Neural Networks (SOPNN) 
consists of the following steps.  
 
Step 1: Determine system’s input variables 

Table 1. Different forms of regression polynomials 
forming a PN. 

  Number of 
        inputs 
Order of 
the polynomial 

2 3 4 

1 (Type 1) Bilinear Trilinear Tetralinear 
2 (Type 2) Biquadratic-1 Triquadratic-1 Tetraquadratic-1
2 (Type 3) Biquadratic-2 Triquadratic-2 Tetraquadratic-2
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Fig. 1. An overall architecture of the conventional 

modified SOPNN. 
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Define the system’s input variables as xi(i=1, 2, …, n) 
related to output variable y. If required, normalization 
of input data can be completed as well. 
 
Step 2: Form training and testing data 
The input-output data set (xi, yi)=(x1i, x2i, …, xni, yi), 
i=1, 2, …, N (N: the total number of data) is divided 
into two parts, that is, a training and a testing dataset. 
Denote their sizes by Nt and Nc respectively. 
Obviously we have N=Nt+Nc. The training data set is 
used to construct the SOPNN model. Next, the testing 
data set is used to evaluate the quality of the model. 
 
Step 3: Determine initial information for constructing 
the SOPNN structure 
We determine initial information for the SOPNN 
structure in the following manner: 
a) According to the stopping criterion, two termination 
methods are exploited here: 
 - Comparison of a minimal identification error of the 
current layer with that of the previous layer of the 
networks. 
 - The maximum number of generations 
predetermined by the designer to achieve a balance 
between model accuracy and its complexity. 
b) The maximum number of input variables arriving at 
each node in the corresponding layer. 
c) The total number W of nodes to be retained 
(selected) at the next generation of the SOPNN 
algorithm.  
d) The value of the weighting factor of the aggregate 
objective function. 
 
Step 4: Determine PN structure using genetic design 
This concerns with the selection of the number of 
input variables, the polynomial order, and the input 
variables to be assigned in each node of the 
corresponding layer. We determine PN structure using 
genetic design.  

The genetic design available in a PN structure by 
using a chromosome of GAs is illustrated in Fig. 3. 
As shown in Fig. 3, the design of optimal parameters 
available within the PN (viz. the number of input 
variables, the order of the polynomials, and input 
variables) at last leads to a structurally and 
parametrically optimized network, which is more 
flexible as well as simpler in architecture than the 
conventional SOPNN. 

Each sub-step of the genetic design procedure of 
three kinds of parameters available within the PN is as 
follows: 
[Step 4-1] Selection of the number of input variables 
(1st sub-chromosome)  
Sub-step 1) The first 3 bits in a chromosome given are 
assigned to the binary bits for the selection of the                
number of input variables.  
Sub-step 2) The 3 bits randomly selected by using  

(3) are decoded in decimal. 

2 1 0(2 (3)) (2 (2)) (2 (1)),bit bit bitβ = × + × + ×    (3) 

where, bit(1), bit(2) and bit(3) show the location of the 
3 bits and are given as “0”, or “1” respectively. 
Sub-step 3) The decimal value β obtained by using  
(3) is normalized. We also round off the value 
obtained from (4). 

( / ) (Max 1) 1,γ β α= × − +  (4) 

where Max is the maximum number of input variables 
arriving at the corresponding node (PN) and α is the 
decoded decimal value when all bits of the 1st sub-
chromosome are 1’s. 
Sub-step 4) The normalized integer value is given as 
the number of input variables (or input nodes) arriving 
at the corresponding node. 
[Step 4-2] Selection of the order of polynomials (2nd 
sub-chromosome) 
Sub-step 1) The 3 bits of the 2nd sub-chromosome 
following the 1st sub-chromosome are assigned to the 
binary bits for the selection of the order of 
polynomials. 
Sub-step 2) The 3 bits randomly selected using (3) are 
decoded in decimal. 
Sub-step 3) The decimal value β obtained using (4) is 
normalized. We also round off the value obtained from 
(4). We replace Max with 3 in (4). Therefore, the 
normalized integer value exists between 1 and 3 as in 
the following (refer to Table 1). 
Sub-step 4) The normalized integer value is given as 
the selected polynomial order, when constructing each 
node of the corresponding layer. 
[Step 4-3] Selection of input variables (3rd sub-
chromosome) 
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Fig. 3. The PN design available in SOPNN

architecture by using a GA chromosome. 



Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 427 
 

 

427

Sub-step 1) The remaining bits are assigned to the 
binary bits for the selection of input variables. 
Sub-step 2) The remaining bits are uniformly divided 
by the value obtained in step 4-1. If the remaining bits 
aren’t uniformly divided, they are divided by the 
following rules.  
Sub-step 3) Each bit structure is decoded in decimal 
by using (3). 
Sub-step 4) Each decimal value obtained in sub-step 3 
by using (4) is normalized. We also round off the 
values obtained from (4). We replace Max with the 
total number of inputs (viz. input variables or input 
nodes), n (or W) in the corresponding layer. Here, the 
total number of input variables means the number of 
entire system inputs, n, in the 1st layer, and the number 
of the selected nodes, W, as the output nodes of the 
preceding layer in the 2nd layer or higher. 
Sub-step 5) The normalized integer values are given 
as the selected input variables when constructing each 
node of the corresponding layer. Here, if the selected 
input variables are multiple-duplicated, the multiple-
duplicated input variables (viz. same input numbers) 
are coped with as one input variable and the 
remainders (except for only one) are discarded (refer 
to Fig. 3). 
 
Step 5: Estimate the coefficients of the polynomial 
corresponding to the selected node (PN) 
The vector of coefficients Ci is derived by minimizing 
the mean squared error between yi and zmi. 

2

0

1 ˆ( ) .
trN

i i
tr i

E y y
N =

= −∑  (5) 

Using the training data subset, this gives rise to the set 
of linear equations 

.i iY X C=  (6) 

Evidently, the coefficients of the PN of nodes in each 
layer are determined by the standard least square 
method.  

This procedure is implemented repeatedly for all 
nodes of the layer and also for all SOPNN layers 
starting from the input layer and moving to the output 
layer. 
 
Step 6: Select nodes (PNs) with the best predictive 
capability, and construct their corresponding layer 
As shown in Fig. 3, all nodes of the corresponding 
layer of SOPNN architecture are constructed by 
genetic optimization.  
The generation process of PNs in the corresponding 
layer is described in detail as the design procedure of 
9 sub-steps. A sequence of the sub-steps is as follows: 
Sub-step 1) We determine initial genetic information 

for generation of the SOPNN architecture. That is, the 
number of generations and populations, mutation rate, 
crossover rate, and the length of a chromosome. 
Sub-step 2) The nodes (PNs) are generated by genetic 
design as many as the number of populations in the 1st 
generation. Where, one population takes the same role 
as one node (PN) in the SOPNN architecture and each 
population is operated by GAs as shown in Fig. 3. 
That is, the number of input variables, the order of the 
polynomials, and the input variables as one individual 
(population) are selected by GAs. The polynomial 
parameters are produced by the standard least squares 
method. 
Sub-step 3) To evaluate the performance of PNs 
(nodes) in each population, we use an aggregate 
objective function that takes into account a sound 
balance between approximation and prediction 
capabilities of the one as shown in (7). And then, from 
the performance index obtained in (7), we calculate 
the fitness function of (8). The objective function (or 
cost function) is employed to decrease the error rate 
and to increase the predictability (generalization) 
capability of the model - that is, the objective function 
includes the performance index for training (PI), and 
the performance index for evaluation (EPI) that are 
combined by means of a weighting factor θ. The 
objective function (performance index) is a basic 
instrument guiding the evolutionary search in the 
solution space [15]. The objective function includes 
both the training data and the testing data and comes 
as a convex sum of two components. 

f(PI, EPI) = θ × PI + (1- θ ) × EPI . (7) 

We define the fitness function of the genetic algorithm 
as follows : 

1( ) .
1 ( , )

F fitness function
f PI EPI

=
+

 (8) 

 PI and EPI denote the performance index for the 
training data and testing data (or validation data), 
respectively. Moreover θ  is a weighting factor that 
allows us to strike a balance between the performance 
of the model for the training and testing data. The 
aggregate object function depends upon the values of 
a weighting factor. Both PI and EPI are considered 
and the proper selection of θ establishes the direction 
of optimization to maintain a balance between the 
approximation and generalization. Model selection is 
performed from the minimization of this aggregate 
objective function. 
Sub-step 4) To produce the next generation, we carry 
out selection, crossover, and mutation operations 
using genetic initial information and the fitness values 
obtained from sub-step 3. 
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Sub-step 5) The nodes (PNs) on the basis of the 
calculated fitness values (F1, F2,…, Fz) are rearranged 
in descending order. We unify the nodes with 
duplicated fitness values (viz. in case that more than 
one node has the same fitness value) among the 
rearranged nodes on the basis of the fitness values. We 
choose several PNs characterized by the best fitness 
values. Here, we use the pre-defined number W of 
PNs with better predictive capability that must be 
preserved for optimal operation of the next iteration in 
the SOPNN algorithm. The outputs of the retained 
nodes (PNs) serve as inputs in the subsequent layer of 
the network. There are two cases as to the number of 
preserved PNs in each layer. 
(i) If z<W, then the number of the nodes (PNs) 
retained for the next layer is equal to z. 
(ii) If z≥W, then for the next layer, the number of the 
retained nodes (PNs) is equal to W. 
Sub-step 6) For the elitist strategy, we select the node 
that has the highest fitness value among the selected 
nodes (W). 
Sub-step 7) We generate new populations of the next 
generation using operators of GAs obtained from sub-
step 4. Then we use the elitist strategy. This sub-step 
carries out by repeating sub-steps 2-6. Especially in 
sub-step 5, we replace the node that has the lowest 
fitness value in the current generation with the node 
that has the highest fitness value in the previous 
generation obtained from sub-step 6. 
Sub-step 8) We combine the nodes (W populations) 
obtained in the previous generation with the nodes (W 
populations) obtained in the current generation. In the 
sequel, W nodes that have higher fitness values among 
them (2W) are selected. That is, this sub-step carries 
out by repeating sub-step 5. 
Sub-step 9) Until the last generation, this sub-step 
carries out by repeating sub-steps 7-8. 
The iterative process generates the optimal nodes of a 
layer in the SOPNN model. 
 
Step 7: Check the termination criterion 
The termination condition that controls the growth of 
the model consists of two components, that is the 

performance index and the size of the network 
(expressed in terms of the maximal number of the 
layers). As far as the performance index is concerned 
(that reflects a numeric accuracy of the layers), a 
termination is straightforward and comes in the form; 

1 *,F F≤  (9) 

where, F1 denotes a maximal fitness value occurring 
at the current layer whereas F* stands for a maximal 
fitness value that occurred at the previous layer. As far 
as the depth of the network is concerned, the 
generation process is stopped at a depth of less than 
five layers. This size of the network has been 
experimentally found to form a sound compromise 
between the high accuracy of the resulting model and 
its complexity as well as generalization abilities. 

In this study, we use a performance index that is 
Euclidean. 

2

1

1 ˆ( ) ( ) ,
N

s s p p
p

E PI or EPI y y
N =

= −∑  (10) 

where  yp is the p-th target output data and ˆ py  
stands for the p-th actual output of the model for this 
specific data point. N is training (PIs) or testing (EPIs) 
input-output data pairs and E is an overall (global) 
performance index defined as a sum of the errors for 
the N. 
 
Step 8: Determine new input variables for the next 
layer 
If (9) has not been satisfied, the model has to be 
expanded. The outputs of the preserved nodes (zli, z2i, 
…, zWi) serves as new inputs to the next layer (x1j, x2j, 
…, xWj)(j=i+1). This is captured by the expression 

1 1 2 2, , ,j i j i wj wix z x z x z= = =… . (11) 

The SOPNN algorithm is carried out by repeating 
steps 4-8 consecutively. 
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Fig. 4. Configuration of a sewage treatment system. 
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5. EXPERIMENTAL STUDIES 

5.1. Sewage treatment process 
Sewage treatment generally uses the activated 

sludge process that consists of sand basin, primary 
sedimentation basin, aeration tank and final 
sedimentation basin (see Fig. 4).  

In this experiment, we use a data set coming from 
the sewage treatment system plant in Seoul, Korea. 
The proposed model is carried out using 52 pairs of 
input (MLSS, WSR, RRSP, and DOSP)-output (SS) 
data obtained from the activated sludge process [15]. 
Table 2 summarizes the parameters of the optimizat-
ion environment and computational effort. In each 
layer, we use 100 generations, 60 populations, 36 bits 
as a string, crossover rate equal to 0.65, and mutation 
probability equal to 0.1. A chromosome used in the 
genetic optimization consists of a string including 3 
sub-chromosomes. Bits per chromosome are assigned 
to 3, 3, and 30 respectively. The population size being 
selected from total population size, 60, is given to 30. 
That is, 60 nodes (PNs) are generated in each layer of 
the network through GA operation. All nodes generated 
in each layer are estimated and evaluated using the 
training and testing data set according to the change of 
a weighting factor of the aggregate objective function. 
These values are then compared and several PNs are 
chosen by a predefined number, 30 that provides 
better performance than the remaining PNs of the 
current layer from the viewpoint of aggregate 
performance index taking into account both PI and 
EPI. The number of inputs to be selected is confined 
to a maximum of 5 inputs. The form of the polynomial 
order is given as 3 types- Type 1, Type 2, and Type 3. 
The value of a weighting factor is considered as 5 
cases such as 0.0, 0.25, 0.5, 0.75, and 1.0. 

Fig. 5 depicts the performance index of a GA-based 
SOPNN according to an increase in the maximal 
number of inputs to be selected when using θ=0.5. Fig. 
6 depicts the performance index of each layer of a 
GA-based SOPNN treated as a function of the 
weighting factor. Fig. 7 shows the performance index 
of a GA-based SOPNN according to the increase in 
the number of layers. Considering the training and 
testing data sets, the best results for the network in the 
3rd layer are obtained when using θ=0.5 with Type 2 
(Polynomial order: quadratic) and 3 node inputs (node 
numbers: 2, 11, 19), (that are quantified as PI=6.837, 
EPI=8.871). The best results for the network in the 5th 
layer coming with PI=5.365 and EPI=4.852 have been 
reported when using θ=0.5 with Type 2 (Polynomial 
order: quadratic) and 2 node inputs (node numbers: 18, 
22). In Figs. 6-7, a(•)- e(•), and A(•)- E(•) denote the 
optimal node numbers of each layer of the network, 
namely those with the best predictive performance. 
Here, the node numbers of the 1st layer represent 
system input numbers, and the node numbers of each 

layer in the 2nd layer or higher represent the output 
node numbers of the preceding layer, as the optimal 

Table 2. Computational overhead and list of 
parameters for a GA-based SOPNN. 

 Parameters 1st ~ 5th layer
Maximum generation 100 
Total population size 60 
Selected population size 

(W) 30 

Crossover rate 0.65 
Mutation rate 0.1 

GA 

String length 3+3+30 
Number of inputs to be 

selected (l) 
1≤l≤ Max 

(2~5) 
Type (T) 1≤T≤3 

SOPNN

Weighting factor (θ) 0≤θ≤1 
l,T: integer
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Fig. 5. Performance index of a GA-based SOPNN 
according to the increase in maximal number 
of inputs to be selected (θ=0.5). 
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node having the best output performance in the 
current layer. Fig. 8 illustrates the detailed optimal 
topologies of the GA-based SOPNN for 3 layers and 5 
layers respectively. As shown in Fig. 8, the GA-based 
design procedure at each stage (layer) of SOPNN 
leads to the selection of preferred nodes (or PNs) with 
local characteristics (such as the number of input 
variables, the order of the polynomial, and input 
variables) available within the SOPNN. In the sequel, 
the proposed network enables the architecture to be a 
structurally more optimized and flexible network than 
the conventional SOPNN. Referring to Fig. 8, we 
adhere to the following notation N T

PNn

: ‘PNn’ 
denotes the nth node (PN) of the corresponding layer, 
‘N’ denotes the number of nodes (inputs or PNs) 
coming to the corresponding node, and ‘T’ denotes the 
polynomial order used in the corresponding node.   

Figs. 9-10 show output comparison and identificat-
ion errors for the optimal network architecture 
visualized in Fig. 8(b). 

Fig. 11 illustrates the optimization process by 
visualizing the performance index in successive 
generations of the GA-based SOPNN. It also shows 
the optimized network architecture (the weighting 
factor θ is set at 0. 5 with 5 layers).  

Table 3 summarizes the results of comparative 
analysis of the proposed model with respect to other 
constructs. 
 
5.2. pH neutralization process 

To demonstrate the high modeling accuracy of the 
GA-based SOPNN, we apply it to a highly nonlinear 
pH neutralization consisting of a weak acid and a 
strong base. This model can be found in a variety of 
practical areas including wastewater treatment, 
biotechnology processing, and chemical processing 
[19-23]. pH is the measurement of the acidity or 
alkalinity of a solution containing a proportion of 
water. It is mathematically defined, for diluted 
solutions, as the negative decimal logarithm of the 
hydrogen ion concentration [H+] in the solution, that is 

pH = - log10[H+]. (12) 

ŷ
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ŷ

MLSS

WSR

RRSP

PN7

2 2

DOSP

PN23

3 2

PN7

3 2

PN29

3 2

PN22

3 2

PN27

3 2

PN18

3 3

PN22

3 2

PN19

2 2

PN18

3 2

PN17

2 2

PN28

3 3

PN23

3 2

PN21

3 3

PN9

3 2

PN4

2 2

PN2

3 3

PN14

2 2

PN11

3 2

PN10

2 2

PN21

2 3

PN18

2 2

PN17

2 2

PN27

3 3

PN25

2 1

PN22

1 2

PN11

3 1

PN5

2 1

PN2

3 1

PN16

2 2

PN14

2 1

PN12

2 3

PN1

2 3

PN30

3 1

 (a) Optimized SOPNN   (b) Optimized SOPNN 
with 3 layers (θ=0.5).    with 5 layers (θ=0.5).

Fig. 8. Genetically optimized SOPNN architecture
(Max=3). 

 

5 10 15 20 254

6
8

10
12
14

16
18
20
22
24

: Original output
: Model output

Data no.

Tr
ai

ni
ng

 d
at

a 
ou

tp
ut

5 10 15 20 250

5

10

15

20

25

: Original output
: Model output

Data no.

Te
st

in
g 

da
ta

 o
ut

pu
t

    (a) Training data.        (b) Testing data. 

Fig. 9. Original output and model output of gas
furnace process (in case of 5 layers and
θ=0.5). 

 

5 10 15 20 25 30 35 40 45 50-6

-4

-2

0

2

4

6
Training data error Testing data error

Data no.

Er
ro

rs

 
Fig. 10. Error curves of SOPNN (in case of 5 layers

and θ=0.5). 
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performance index by the Gas. 

 
Table 3. Comparison of performance with other 

modeling methods. 
Performance indexModel PIs EPIs 

Simplified 13.726 16.206Fuzzy model 
[15] Linear 6.396 54.233

Simplified 12.403 12.200Hybrid Fuzzy 
model [16] Linear 7.157 24.658

Simplified 13.401 8.287Fuzzy set-based
FNN model[17] Linear 12.307 9.828

Simplified 12.943 12.176Fuzzy relation-based 
FNN model [18] Linear 10.584 12.108

θ=0.5 (3rd layer) 6.837 8.871Our model 
θ=0.5 (5th layer) 5.365 4.852

PIs - performance index on the training data, 
EPIs - performance index on the testing data. 
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In a continuously stirred tank reactor (CSTR) [24,25] 
the investigated acetic acid (HAC) of concentration Ca 
flows into the tank at flow rate Fa, and is neutralized 
by sodium hydroxide (NaOH) of concentration Cb that 
flows into the tank at rate Fb. The equations of the 
CSTR can be described as follows (here we assume 
that the tank is perfectly mixed and isothermal, cf. 
[24]). The process equations for the CSTR are given 
by 
 

( )a
a a a b a

Vdw
F C F F W

dt
= − + , (13a) 

( )b
b b a b b

Vdw
F C F F W

dt
= − + , (13b) 

 
where the constant V is the volume of the content in 
the reactor, wa and wb are the concentrations of the 
acid and the base, respectively. 

The above equation describes how the 
concentrations of wa and wb change dynamically over 
time subject to the input streams Fa and Fb. To obtain 
the pH in the effluent, we need to find a relation 
between instantaneous concentrations wa and wb and 
pH values. This relationship can be described by a 
nonlinear algebraic equation known as the titration or 
characteristic curve. Depending on the chemical 
species used, the titration curve varies. Here we 
consider the case that a weak influent is neutralized by 
a strong reagent. The words strong and weak are used 
to characterize the degree of ionic dissociation in an 
aqueous solution. Strong reagents completely 
dissociate into their hydrogen or hydroxyl ions 
whereas weak reagents are only partially ionized. 

Consider an acetic acid (weak acid) denoted by 
HAC being neutralized by a strong base NaOH 
(sodium bydroxide) in water. The reactions are 
 

H2O ⇔ H+ + OH-,  (14a) 
HAC ⇔ H+ + AC, (14b) 
NaOH ⇒ Na+ + OH-. (14c) 

 
According to the electroneutrality condition, the sum 
of the charges of all ions in the solution must be zero, 
i.e. 

[Na+]+[H+] = [OH-] + [AC-], (15) 

where the symbol [X] denotes the concentration of the 
ion X. 

On the other hand, the following equilibrium 
relationships hold for water and acetic acid: 
 

Ka= [AC-][H+] / [HAC], (16a) 
Kw= [H+][OH-], (16b) 

 
where Ka and Kw are the dissociation constants of the 
acetic acid and water with Ka=1.76×10-5 and Kw=10-4. 
Defining wa=[HAC]+[AC-] as the total acetate and 
wb=[Na+] and inserting Eqs. (16a) and (16b) into (15), 
we have 

[H+]3+[H+]2{ Ka + wb }+[H+]{Ka (wb - wa)- Kw}-KaKw =0. (17) 

Using (12), (17) becomes 

10 10 0
1 10

w
a

pH pKpH a
b pK pH

W
W −−

−
+ − − =

+
,  (18) 

Table 4. Parameters and initial values for pH process. 
Variables Meaning Initial setting
V 
Fa 
Fb 
Ca 
Cb 
Ka 
Kw 
Wa(0) 
Wb(0) 

Volume of tank 
Flow rate of acid 
Flow rate of base 
Concentration of acid in Fa 
Concentration of base in Fb 
Acid equilibrium constant 
Water equilibrium constant 
Concentration of acid 
Concentration of base 

1000 cc 
81 cc/min 
515 cc/min 
0.32 mole/l 
0.05 mole/l 
1.76*10-5 
1.0*10-14 
0.0435 mole/l 
0.0432 mole/l 

 
Table 5. Summary of the parameters of the 

optimization and computational effort. 
 Parameters 1st ~ 5th layer

Maximum generation 100 
Total population size 60 
Selected population size 

(W) 30 

Crossover rate 0.65 
Mutation rate 0.1 

GA 

String length 4+3+60 
Number of inputs to be 

selected (l) 
1≤l≤ Max 

(3,5,7,10) 
Type (T) 1≤T≤3 SOPNN 

Weighting factor (θ) 0≤θ≤1 
l,T : integer
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Fig. 12. Performance index of GA-based SOPNN 

according to the increase in the maximal 
number of inputs to be selected. 
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where pKa=-log10ka.  
We consider the weak acid-strong base neutralization 

process described by (13a), (13b) and (18). By fixing 
the acid flow-rate Fa (81cc/min) at a specific value, the 
process is regarded as a single variable system with 
base flow-rate Fb and the pH in the effluent being the 

input and output, respectively. The (Fb, ypH) data pairs 
were produced by using the process physical model 
with the values of the parameters given in Table 4.  

The base flow rate Fb was given by 
 

515 51.5sin(2 / 25), 150,bF t for t= + ≤π  (19a) 
515 25.75sin(2 / 25) 25.75sin(2 /10),

150.
bF t t

for t
= + +

〉

π π
         

 (19b) 

To obtain such data pairs, we applied the Newton-
Raphson method, which is given by 
 

1
( )
( )

i
i i

i

f pH
pH pH

f pH+ = −
′

. (20) 

 
The system inputs of the GA-based SOPNN structure 
consist of the delayed terms of Fb(t) and ypH(t), which 
are the input and output of the process, i.e., 
 
ˆ ( ) ( ( 3), ( 2), ( 1), ( 3),

( 2), ( 1)), (21)
pH b b b pH

pH pH

y t F t F t F t y t

y t y t

= − − − −

− −

ϕ

 
where ˆ pHy  and ypH denote the GA-based SOPNN 
model output and the actual process output, 
respectively. 500 data pairs are generated from (19a), 
(19b), and (20) where the total data are used for 
training. To come up with a quantitative evaluation of 
the network, we use the standard MSE performance 
index of (10). 

Table 5 shows a summary of the parameters of the 
optimization and computational effort. The GA-based 
design procedure is carried out in a similar manner 
using the parameters of Table 4. 

Fig. 12 depicts the performance index of GA-based 
SOPNN according to the increase in the maximal 
number of inputs to be selected. The best results for 
the network in the 3rd layer are obtained when using 
Max=10 with Type 2 (Polynomial order: quadratic) 
and 10 node inputs (node number: 2, 9, 10, 12, 18, 19, 
21, 27, 28, 29), (that are quantified as PI=0.00019), 
The best results for the network in the 5th layer 
coming with PI=0.00013 have been reported when 
Max=10 with Type 2 (Polynomial order: quadratic) 
and 9 node inputs (node inputs: 1, 3, 5, 13, 14, 17, 21, 
28, 30). 

Figs. 13-14 show output comparison and 
identification errors for the optimal network 
architecture visualized when Max=10 with Type 2. 

Fig. 15 illustrates the optimization process by 
visualizing the performance index in successive 
generations of the GA-based SOPNN. As shown in 
Fig. 15, the variation ratio (slope) of the performance 
of the GA-based SOPNN model changes radically at 
the 2nd layer. Therefore, to effectively reduce a large 
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Fig. 13. Original output and model output of nonlinear 

function data. 
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Fig. 14. Error curves of SOPNN. 
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Fig. 15. The optimization process of each perfor-

mance index by the genetic algorithms. 
 
Table 6. Comparison of performance with other 

modeling methods. 
Model PI 

USOCPN 0.230 Nie’s 
model [26] SSOCPN 0.012 

Case 1 0.0015 Basic SOPNN 
(15th Layer) Case 2 0.0052 

Case 1 0.0039 
SOPNN 

[7] Modified SOPNN 
(10th Layer ) Case 2 0.0124 

Our model (3rd Layer) 0.00019
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number of nodes and avoid a large amount of time-
consuming iteration of SOPNN layers, the stopping 
criterion can be taken into consideration up to 
maximally the 2nd or 3rd layer.   

Table 6 depicts a comparison of identification errors 
with previous modeling methods. In the literature [26], 
which the unsupervised self-organizing counter-
propagation network algorithm (USOCPN) and 
unsupervised self-organizing counter-propagation 
network algorithm (SSOCPN) were proposed, the 
number of fuzzy rules and mean square errors (MSEs) 
were 31 and 0.230, respectively for the case of the 
USOCPN, and 34 and 0.012, respectively for the case 
of the SSOCPN. Compared with that approach, Table 
6 shows that the proposed method is much more 
superior. 
 

6. CONCLUSIONS 

In this study, the GA-based design procedure of 
Self-Organizing Polynomial Neural Networks 
(SOPNN) and its design methodology were proposed 
to construct optimal model architecture for nonlinear 
and complex system modeling. The design metho-
dology comes with hybrid structural optimization and 
parametric learning viewed as two phases of modeling 
building. That is, the one phase (hybrid structural 
optimization) is realized via both GAs and a structural 
phase of a self-organizing and an evolutionary 
algorithm as the main characteristics of the GMDH 
method, while the other phase (parametric 
optimization) is carried out by a standard least square 
estimation-based learning. The essence of the GA-
based SOPNN lies in polynomial based activation 
nodes and network architecture based on the GMDH 
and genetically optimized multi-layer perceptrons 
(MLPs). Accordingly, the architecture of the network 
is not predetermined (as in most existing neural 
networks) but becomes dynamically adjusted and 
optimized during the development process. The GA-
based design procedure at each stage (layer) of the 
SOPNN leads to the selection of these preferred nodes 
(or PNs) with local characteristics (such as the number 
of input variables, the order of the polynomials, and 
input variables) available within the SOPNN. Then, 
based on these selections, we build flexible and 
optimized architecture of the GA-based SOPNN. The 
comprehensive experimental studies involving well-
known datasets (sewage treatment process data and 
pH neutralization process) quantify a superb 
performance of the network in comparison to the 
existing fuzzy and neuro-fuzzy models. First of all, we 
could efficiently search for the optimal network 
architecture (structurally and parametrically optimized 
network) by the design methodology of GA-based 
SOPNN in comparison to that of the conventional 
SOPNN.  
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