
Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 423

423

Self-Organizing Polynomial Neural Networks Based on Genetically

Optimized Multi-Layer Perceptron Architecture

Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh*

Abstract: In this paper, we introduce a new topology of Self-Organizing Polynomial Neural
Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss
its comprehensive design methodology involving mechanisms of genetic optimization. Let us
recall that the design of the “conventional” SOPNN uses the extended Group Method of Data
Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of
input nodes at polynomial neurons (or nodes) located in each layer. However, this design
process does not guarantee that the conventional SOPNN generated through learning results in
optimal network architecture. The design procedure applied in the construction of each layer of
the SOPNN deals with its structural optimization involving the selection of preferred nodes (or
PNs) with specific local characteristics (such as the number of input variables, the order of the
polynomials, and input variables) and addresses specific aspects of parametric optimization. An
aggregate performance index with a weighting factor is proposed in order to achieve a sound
balance between the approximation and generalization (predictive) abilities of the model. To
evaluate the performance of the GA-based SOPNN, the model is experimented using pH
neutralization process data as well as sewage treatment process data. A comparative analysis
indicates that the proposed SOPNN is the model having higher accuracy as well as more superb
predictive capability than other intelligent models presented previously.

Keywords: Aggregate objective function, design procedure, GA-based SOPNN, Genetic
Algorithms (GAs), Group Method of Data Handling (GMDH), Polynomial Neuron (PN), Self-
Organizing Polynomial Neural Networks (SOPNN).

1. INTRODUCTION

Recently, much attention has been directed towards
the advanced techniques of system modeling. The
panoply of existing methodologies and ensuing
detailed algorithms are confronted with nonlinear
systems, extreme problem dimensionality, a quest for
high accuracy and generalization capabilities of the
ensuing models.

When the complexity of the system to be modeled
increases, experimental data as well as some degree of

prior domain knowledge (conveyed by the model
developer) are essential to the completion of an
efficient design procedure.

It is also worth stressing that the nonlinear form of
the model acts as a two-edged sword: while we gain
flexibility to cope with experimental data, we are
provided with an abundance of nonlinear
dependencies that need to be exploited in a systematic
manner. In particular, when dealing with high-order
nonlinear and multivariable equations of the model,
we require a vast amount of data necessary for
estimating its complete range of parameters [1,2].

To help alleviate such problems, one of the first
approaches along systematic design of nonlinear
relationships between system’s inputs and outputs
comes into play, known as the Group Method of Data
Handling (GMDH). GMDH was developed in the late
1960s by Ivakhnenko [3-6] as a vehicle for identifying
nonlinear relations between input and output variables.
While providing a useful systematic design procedure,
GMDH also has some drawbacks. First, it tends to
generate quite complex polynomials for relatively
simple systems (data). Second, owing to its limited
generic structure (quadratic two-variable polynomial),
GMDH also tends to produce an overly complex

Manuscript received September 23, 2003; revised March 23,

2004; accepted April 26, 2004. Recommended by Editorial
Board member Min-Jea Tahk under the direction of Editor Jin
Bae Park. This work has been supported by KESRI (R-2003-
B-274) which is funded by MOCIE (Ministry of Commerce,
Industry and Energy).

 Ho-Sung Park, Byoung-Jun Park, and Sung-Kwun Oh are
with the Dept. of Electrical Electronic & Information
Engineering, Wonkwang University, 344-2 Shinyong-dong,
Iksan, Chonbuk 570-749, Korea (e-mails: {neuron, lcap,
ohsk}@wonkwang.ac.kr).

Hyun-Ki Kim is with the Dept. of Electrical Engineering,
Suwon University, San 2-2 Wau-ri, Bongdam-eup, Hwaseong-si,
Gyeonggi-do 445-743, Korea (e-mail: hkkim@suwon.ac.kr).
* Corresponding author.

International Journal of Control, Automation, and Systems, vol. 2, no. 4, pp. 423-434, December 2004

424 Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh

network (model) when it comes to highly nonlinear
systems. Third, if there are less than three input
variables, the GMDH algorithm does not generate a
highly versatile structure.

To alleviate the problems associated with the
GMDH, Self-Organizing Polynomial Neural
Networks (SOPNN) were introduced by Oh et al. [7-
9] as a new class of networks. In a nutshell, these
networks come with a high level of flexibility as each
node (processing element forming a PD (or PN)) can
have a different number of input variables as well as
exploit a different order of the polynomials (linear,
quadratic, cubic, etc.). Although the SOPNN contains
flexible model architecture with higher accuracy due
to its systematic design procedure, it is difficult to
obtain a structurally and parametrically optimized
network because of the limited design of polynomial
neurons (PNs) located in each layer of SOPNN.
Accordingly, the SOPNN algorithm tends to produce
overly complex networks as well as a repetitive
computational load by the trial and error method
and/or a repetitive parameter adjustment by the
designer, as in the case of the original GMDH
algorithm.

In this study, in solving the problems with the
conventional SOPNN as well as the GMDH algorithm,
we introduce a new design approach of GA-based
SOPNN. Optimal design parameters available within
the PN (viz. the number of input variables, the order
of the polynomials, and input variables) lead to a
structurally and parametrically optimized network,
which is more flexible as well as simpler in
architecture than the conventional SOPNN.
Furthermore, we introduce an aggregate objective
function that deals with training data and testing data,
and elaborate on its optimization to produce a
meaningful balance between approximation and
generalization abilities of the model. In a nutshell, the
objective of this study is to develop a general design
methodology of GA-based SOPNN modeling, come
up with a logic-based structure for such a model and
propose a comprehensive evolutionary development
environment in which the optimization of the models
can be efficiently carried out both at the structural as
well as at the parametric level [10].

To evaluate the performance of the proposed model,
we exploit pH neutralization process data [19-26] as
well as sewage treatment process data [15-18].

2. THE SOPNN ALGORITHM AND ITS
GENERIC ARCHITECTURE

2.1. SOPNN algorithm
The SOPNN algorithm [7-9] is based on the

GMDH method and utilizes a class of polynomials
such as linear, quadratic, and modified quadratic (refer
to Table 1). By choosing the most significant input

variables and a certain order of the polynomials
among the available variety of structures at our
disposal, we can construct the best partial description
(PD) as polynomial neuron (PN). The individual PNs
are expressed as a second-order regression equation.
In particular, when combining two inputs at each node
as the generic structure we arrive at the following
relationship;

2 2
i j i j i jy A BX CX DX EX FX X= + + + + + . (1)

In the above expression, A, B, C, D, E, and F are
parameters of the model, while y is the output of this
model; Xi and Xj denote two inputs.

The outputs obtained from each of these nodes are
then combined to obtain a higher-degree polynomial.
In this case, a complex polynomial is formed (referred
to as an Ivakhnenko polynomial). This function
usually takes on the form

1 1 1

n n n

i i ij i j
i i j

y A B X C X X
= = =

= + +∑ ∑∑

1 1 1
,

n n n

ijk i j k
i j k

D X X X
= = =

+∑∑∑ " (2)

where Xi, Xj and Xk are the nodal input variables, and y
is the output of an individual neuron (node). A, Bi, Cij,
and Dijk are the coefficients of the Ivakhnenko
polynomial.

The SOPNN design activities have focused over the
past years on the development of self-organizing,
minimal polynomial networks with good generation
capabilities. Searching for the optimal configuration in
the space of all possible polynomial neural networks
is intractable and requires the application of certain
heuristic rules. The SOPNN leads to self-organizing
heuristic hierarchical models of high degree equipped
with an automatic elimination of undesirable variable
interactions.

2.2. SOPNN architecture

The SOPNN based on the perceptron learning
principle with neural network-type architecture is used
to model the input-output relationship of a complex
process system. The design of the SOPNN structure
continues and involves the generation of some
additional layers. Each layer consists of nodes (PDs or
PNs) for which the number of input variables could be
the same as in the previous layers or may differ across
the network. At each layer, new generations of
complex equations are constructed from simple forms.
The model obtained at each layer is progressively
more complex than the model at the preceding layers.
To avoid an overfit, the overall data set is divided into

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 425

425

a) the training set, which is used for the generation of
several computing alternative models and b) the
testing set, which is used to test the accuracy of each
model generated and for the selection of the best
models at each layer. The number of layers is
increased until the newer models begin to exhibit
weaker predictability than their predecessors. This
indicates overfitting of the model. The final model is
defined as a function of two, three, or four variables.
The network result is a very sophisticated model
obtained from a very limited data set.

We introduce two types of generic SOPNN
structures, namely the basic and the modified SOPNN.
Moreover, for each type of topology we identify two
schemes [7-9]. The modified SOPNN architectures are
shown in Fig. 1. In what follows, the SOPNN emerges

E

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

PNs Selection

Genetic
design

Genetic
design

Layer
Generation

1st
layer
1st

layer

S

E : Entire inputs, S : Selected PNs, zi : Preferred outputs in the ith stage(zi=z1i, z2i, ..., zWi)

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

PNs Selection

Layer
Generation

S

2nd stage

z1 z2

Genetic
design

Genetic
design

2nd
layer
2nd

layer

1st stage

Fig. 2. Overall structural optimization process of

SOPNN using Gas.

as a versatile architecture whose topology depends on
the regression polynomial of a PN.

3. GENETIC OPTIMIZATION OF SOPNN

When we construct the PNs of each layer in the
conventional SOPNN, such parameters as the number
of input variables (nodes), the order of polynomials,
and input variables available within a PN are fixed
(selected) in advance by the designer. That is, the
designer must have pre-determined information
related to networks such as the number of system
input variables and the polynomial order. Because the
conventional SOPNN is a heuristic method, it does not
guarantee that the constructed SOPNN is an optimal
network architecture. Accordingly, in order to generate
a structurally and parametrically optimized SOPNN
network, such parameters need to be optimal.

In order to solve this problem, we use genetic
algorithms that are a stochastic global search
technique based on the principles of evolution, natural
selection and genetic recombination by simulating
“survival of the fittest” in a population of potential
solutions (individuals) to the problem at hand [11-14].

In this study, for the optimization of the SOPNN
model, GAs use the serial method of binary type,
roulette-wheel in the selection operator, one-point
crossover in the crossover operator, and invert in the
mutation operator. As the roulette-wheel operator’s
stochastic characteristic, when creating new
population of new generation by selection operator,
we will choose the best chromosome from the last
generation. To reduce the stochastic errors of roulette-
wheel selection, we use elitist strategy [13]. The
overall structural optimization process of SOPNN
using GAs is shown in Fig. 2.

4. GA-BASED SOPNN ALGORITHM

The framework of the design procedure of the Self-
Organizing Polynomial Neural Networks (SOPNN)
consists of the following steps.

Step 1: Determine system’s input variables

Table 1. Different forms of regression polynomials
forming a PN.

 Number of
 inputs
Order of
the polynomial

2 3 4

1 (Type 1) Bilinear Trilinear Tetralinear
2 (Type 2) Biquadratic-1 Triquadratic-1 Tetraquadratic-1
2 (Type 3) Biquadratic-2 Triquadratic-2 Tetraquadratic-2

•••

x1•

x2•

x3•

x4•

PN

xq

xp xxxxPNZ qpqpi =),:,(PN

xq

xp

xxxxPNZ qpqpi =),:,(CASE I PN

CASE 'II

•••

•
•

x1•

x2•

NOP

NOP

NOP

NOP

NOP

NOP

xp xxPNZ ppi =):(CASE I PN

xx pp=):(CASE PNZi
'II PN

Generic Type

Advanced Type

'xp

xr

xr,

xq

xp

xxxxPNZ qpqpi =),:,(PN
xr

xr,'

ŷ

ŷ

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN
PN

PN

PN

PN

PN

Fig. 1. An overall architecture of the conventional

modified SOPNN.

426 Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh

Define the system’s input variables as xi(i=1, 2, …, n)
related to output variable y. If required, normalization
of input data can be completed as well.

Step 2: Form training and testing data
The input-output data set (xi, yi)=(x1i, x2i, …, xni, yi),
i=1, 2, …, N (N: the total number of data) is divided
into two parts, that is, a training and a testing dataset.
Denote their sizes by Nt and Nc respectively.
Obviously we have N=Nt+Nc. The training data set is
used to construct the SOPNN model. Next, the testing
data set is used to evaluate the quality of the model.

Step 3: Determine initial information for constructing
the SOPNN structure
We determine initial information for the SOPNN
structure in the following manner:
a) According to the stopping criterion, two termination
methods are exploited here:
 - Comparison of a minimal identification error of the
current layer with that of the previous layer of the
networks.
 - The maximum number of generations
predetermined by the designer to achieve a balance
between model accuracy and its complexity.
b) The maximum number of input variables arriving at
each node in the corresponding layer.
c) The total number W of nodes to be retained
(selected) at the next generation of the SOPNN
algorithm.
d) The value of the weighting factor of the aggregate
objective function.

Step 4: Determine PN structure using genetic design
This concerns with the selection of the number of
input variables, the polynomial order, and the input
variables to be assigned in each node of the
corresponding layer. We determine PN structure using
genetic design.

The genetic design available in a PN structure by
using a chromosome of GAs is illustrated in Fig. 3.
As shown in Fig. 3, the design of optimal parameters
available within the PN (viz. the number of input
variables, the order of the polynomials, and input
variables) at last leads to a structurally and
parametrically optimized network, which is more
flexible as well as simpler in architecture than the
conventional SOPNN.

Each sub-step of the genetic design procedure of
three kinds of parameters available within the PN is as
follows:
[Step 4-1] Selection of the number of input variables
(1st sub-chromosome)
Sub-step 1) The first 3 bits in a chromosome given are
assigned to the binary bits for the selection of the
number of input variables.
Sub-step 2) The 3 bits randomly selected by using

(3) are decoded in decimal.

2 1 0(2 (3)) (2 (2)) (2 (1)),bit bit bitβ = × + × + × (3)

where, bit(1), bit(2) and bit(3) show the location of the
3 bits and are given as “0”, or “1” respectively.
Sub-step 3) The decimal value β obtained by using
(3) is normalized. We also round off the value
obtained from (4).

(/) (Max 1) 1,γ β α= × − + (4)

where Max is the maximum number of input variables
arriving at the corresponding node (PN) and α is the
decoded decimal value when all bits of the 1st sub-
chromosome are 1’s.
Sub-step 4) The normalized integer value is given as
the number of input variables (or input nodes) arriving
at the corresponding node.
[Step 4-2] Selection of the order of polynomials (2nd
sub-chromosome)
Sub-step 1) The 3 bits of the 2nd sub-chromosome
following the 1st sub-chromosome are assigned to the
binary bits for the selection of the order of
polynomials.
Sub-step 2) The 3 bits randomly selected using (3) are
decoded in decimal.
Sub-step 3) The decimal value β obtained using (4) is
normalized. We also round off the value obtained from
(4). We replace Max with 3 in (4). Therefore, the
normalized integer value exists between 1 and 3 as in
the following (refer to Table 1).
Sub-step 4) The normalized integer value is given as
the selected polynomial order, when constructing each
node of the corresponding layer.
[Step 4-3] Selection of input variables (3rd sub-
chromosome)

Selection of node(PN) structrue by chromosome

i) Bits for the selection of
the no. of input variables

Decoding
(Decimal)

Normalization
(less than

Max)

iii) Bits for the selection
of input variables

ii) Bits for the selection
of the polynomial order

PN

1 0 1 1 1 1 10 10 1 1

1 1 0 1 1 1

1 r

Decoding
(Decimal)

Decoding
(Decimal)

Normalization
(1 ~ n(or W))

Decision of
input variables

Selection of
the order of
polynomial

(Type 1~Type 3)

Selection of
no. of input
variables(r) Selection of input variables

Related bit items

Genetic
Design

Selected PN

Decoding
(Decimal)

Normalization
(1 ~ 3)

Normalization
(1 ~ n(or W))

Decision of
input variables

Bit structure of sub-
chromosome divided

for each item

Fig. 3. The PN design available in SOPNN

architecture by using a GA chromosome.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 427

427

Sub-step 1) The remaining bits are assigned to the
binary bits for the selection of input variables.
Sub-step 2) The remaining bits are uniformly divided
by the value obtained in step 4-1. If the remaining bits
aren’t uniformly divided, they are divided by the
following rules.
Sub-step 3) Each bit structure is decoded in decimal
by using (3).
Sub-step 4) Each decimal value obtained in sub-step 3
by using (4) is normalized. We also round off the
values obtained from (4). We replace Max with the
total number of inputs (viz. input variables or input
nodes), n (or W) in the corresponding layer. Here, the
total number of input variables means the number of
entire system inputs, n, in the 1st layer, and the number
of the selected nodes, W, as the output nodes of the
preceding layer in the 2nd layer or higher.
Sub-step 5) The normalized integer values are given
as the selected input variables when constructing each
node of the corresponding layer. Here, if the selected
input variables are multiple-duplicated, the multiple-
duplicated input variables (viz. same input numbers)
are coped with as one input variable and the
remainders (except for only one) are discarded (refer
to Fig. 3).

Step 5: Estimate the coefficients of the polynomial
corresponding to the selected node (PN)
The vector of coefficients Ci is derived by minimizing
the mean squared error between yi and zmi.

2

0

1 ˆ() .
trN

i i
tr i

E y y
N =

= −∑ (5)

Using the training data subset, this gives rise to the set
of linear equations

.i iY X C= (6)

Evidently, the coefficients of the PN of nodes in each
layer are determined by the standard least square
method.

This procedure is implemented repeatedly for all
nodes of the layer and also for all SOPNN layers
starting from the input layer and moving to the output
layer.

Step 6: Select nodes (PNs) with the best predictive
capability, and construct their corresponding layer
As shown in Fig. 3, all nodes of the corresponding
layer of SOPNN architecture are constructed by
genetic optimization.
The generation process of PNs in the corresponding
layer is described in detail as the design procedure of
9 sub-steps. A sequence of the sub-steps is as follows:
Sub-step 1) We determine initial genetic information

for generation of the SOPNN architecture. That is, the
number of generations and populations, mutation rate,
crossover rate, and the length of a chromosome.
Sub-step 2) The nodes (PNs) are generated by genetic
design as many as the number of populations in the 1st
generation. Where, one population takes the same role
as one node (PN) in the SOPNN architecture and each
population is operated by GAs as shown in Fig. 3.
That is, the number of input variables, the order of the
polynomials, and the input variables as one individual
(population) are selected by GAs. The polynomial
parameters are produced by the standard least squares
method.
Sub-step 3) To evaluate the performance of PNs
(nodes) in each population, we use an aggregate
objective function that takes into account a sound
balance between approximation and prediction
capabilities of the one as shown in (7). And then, from
the performance index obtained in (7), we calculate
the fitness function of (8). The objective function (or
cost function) is employed to decrease the error rate
and to increase the predictability (generalization)
capability of the model - that is, the objective function
includes the performance index for training (PI), and
the performance index for evaluation (EPI) that are
combined by means of a weighting factor θ. The
objective function (performance index) is a basic
instrument guiding the evolutionary search in the
solution space [15]. The objective function includes
both the training data and the testing data and comes
as a convex sum of two components.

f(PI, EPI) = θ × PI + (1- θ) × EPI . (7)

We define the fitness function of the genetic algorithm
as follows :

1() .
1 (,)

F fitness function
f PI EPI

=
+

 (8)

 PI and EPI denote the performance index for the
training data and testing data (or validation data),
respectively. Moreover θ is a weighting factor that
allows us to strike a balance between the performance
of the model for the training and testing data. The
aggregate object function depends upon the values of
a weighting factor. Both PI and EPI are considered
and the proper selection of θ establishes the direction
of optimization to maintain a balance between the
approximation and generalization. Model selection is
performed from the minimization of this aggregate
objective function.
Sub-step 4) To produce the next generation, we carry
out selection, crossover, and mutation operations
using genetic initial information and the fitness values
obtained from sub-step 3.

428 Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh

Sub-step 5) The nodes (PNs) on the basis of the
calculated fitness values (F1, F2,…, Fz) are rearranged
in descending order. We unify the nodes with
duplicated fitness values (viz. in case that more than
one node has the same fitness value) among the
rearranged nodes on the basis of the fitness values. We
choose several PNs characterized by the best fitness
values. Here, we use the pre-defined number W of
PNs with better predictive capability that must be
preserved for optimal operation of the next iteration in
the SOPNN algorithm. The outputs of the retained
nodes (PNs) serve as inputs in the subsequent layer of
the network. There are two cases as to the number of
preserved PNs in each layer.
(i) If z<W, then the number of the nodes (PNs)
retained for the next layer is equal to z.
(ii) If z≥W, then for the next layer, the number of the
retained nodes (PNs) is equal to W.
Sub-step 6) For the elitist strategy, we select the node
that has the highest fitness value among the selected
nodes (W).
Sub-step 7) We generate new populations of the next
generation using operators of GAs obtained from sub-
step 4. Then we use the elitist strategy. This sub-step
carries out by repeating sub-steps 2-6. Especially in
sub-step 5, we replace the node that has the lowest
fitness value in the current generation with the node
that has the highest fitness value in the previous
generation obtained from sub-step 6.
Sub-step 8) We combine the nodes (W populations)
obtained in the previous generation with the nodes (W
populations) obtained in the current generation. In the
sequel, W nodes that have higher fitness values among
them (2W) are selected. That is, this sub-step carries
out by repeating sub-step 5.
Sub-step 9) Until the last generation, this sub-step
carries out by repeating sub-steps 7-8.
The iterative process generates the optimal nodes of a
layer in the SOPNN model.

Step 7: Check the termination criterion
The termination condition that controls the growth of
the model consists of two components, that is the

performance index and the size of the network
(expressed in terms of the maximal number of the
layers). As far as the performance index is concerned
(that reflects a numeric accuracy of the layers), a
termination is straightforward and comes in the form;

1 *,F F≤ (9)

where, F1 denotes a maximal fitness value occurring
at the current layer whereas F* stands for a maximal
fitness value that occurred at the previous layer. As far
as the depth of the network is concerned, the
generation process is stopped at a depth of less than
five layers. This size of the network has been
experimentally found to form a sound compromise
between the high accuracy of the resulting model and
its complexity as well as generalization abilities.

In this study, we use a performance index that is
Euclidean.

2

1

1 ˆ() () ,
N

s s p p
p

E PI or EPI y y
N =

= −∑ (10)

where yp is the p-th target output data and ˆ py
stands for the p-th actual output of the model for this
specific data point. N is training (PIs) or testing (EPIs)
input-output data pairs and E is an overall (global)
performance index defined as a sum of the errors for
the N.

Step 8: Determine new input variables for the next
layer
If (9) has not been satisfied, the model has to be
expanded. The outputs of the preserved nodes (zli, z2i,
…, zWi) serves as new inputs to the next layer (x1j, x2j,
…, xWj)(j=i+1). This is captured by the expression

1 1 2 2, , ,j i j i wj wix z x z x z= = =… . (11)

The SOPNN algorithm is carried out by repeating
steps 4-8 consecutively.

TRANSPORTATION
PROCESS

SAND
BASIN

PRIMARY
SEDIMENTATION

BASIN

AERATION
TANK

FINAL
SEDIMENTATION

BASIN

TERTIARY
TREATMENT

NATURAL
CIRCUMSTANCES

WASTE WATER
SOURCE

SLUDGE TREATMENT
PROCESS

ACTIVATED SLUDGE PROCESS

: Waster water flow : Flow of solid material

Fig. 4. Configuration of a sewage treatment system.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 429

429

5. EXPERIMENTAL STUDIES

5.1. Sewage treatment process
Sewage treatment generally uses the activated

sludge process that consists of sand basin, primary
sedimentation basin, aeration tank and final
sedimentation basin (see Fig. 4).

In this experiment, we use a data set coming from
the sewage treatment system plant in Seoul, Korea.
The proposed model is carried out using 52 pairs of
input (MLSS, WSR, RRSP, and DOSP)-output (SS)
data obtained from the activated sludge process [15].
Table 2 summarizes the parameters of the optimizat-
ion environment and computational effort. In each
layer, we use 100 generations, 60 populations, 36 bits
as a string, crossover rate equal to 0.65, and mutation
probability equal to 0.1. A chromosome used in the
genetic optimization consists of a string including 3
sub-chromosomes. Bits per chromosome are assigned
to 3, 3, and 30 respectively. The population size being
selected from total population size, 60, is given to 30.
That is, 60 nodes (PNs) are generated in each layer of
the network through GA operation. All nodes generated
in each layer are estimated and evaluated using the
training and testing data set according to the change of
a weighting factor of the aggregate objective function.
These values are then compared and several PNs are
chosen by a predefined number, 30 that provides
better performance than the remaining PNs of the
current layer from the viewpoint of aggregate
performance index taking into account both PI and
EPI. The number of inputs to be selected is confined
to a maximum of 5 inputs. The form of the polynomial
order is given as 3 types- Type 1, Type 2, and Type 3.
The value of a weighting factor is considered as 5
cases such as 0.0, 0.25, 0.5, 0.75, and 1.0.

Fig. 5 depicts the performance index of a GA-based
SOPNN according to an increase in the maximal
number of inputs to be selected when using θ=0.5. Fig.
6 depicts the performance index of each layer of a
GA-based SOPNN treated as a function of the
weighting factor. Fig. 7 shows the performance index
of a GA-based SOPNN according to the increase in
the number of layers. Considering the training and
testing data sets, the best results for the network in the
3rd layer are obtained when using θ=0.5 with Type 2
(Polynomial order: quadratic) and 3 node inputs (node
numbers: 2, 11, 19), (that are quantified as PI=6.837,
EPI=8.871). The best results for the network in the 5th
layer coming with PI=5.365 and EPI=4.852 have been
reported when using θ=0.5 with Type 2 (Polynomial
order: quadratic) and 2 node inputs (node numbers: 18,
22). In Figs. 6-7, a(•)- e(•), and A(•)- E(•) denote the
optimal node numbers of each layer of the network,
namely those with the best predictive performance.
Here, the node numbers of the 1st layer represent
system input numbers, and the node numbers of each

layer in the 2nd layer or higher represent the output
node numbers of the preceding layer, as the optimal

Table 2. Computational overhead and list of
parameters for a GA-based SOPNN.

 Parameters 1st ~ 5th layer
Maximum generation 100
Total population size 60
Selected population size

(W) 30

Crossover rate 0.65
Mutation rate 0.1

GA

String length 3+3+30
Number of inputs to be

selected (l)
1≤l≤ Max

(2~5)
Type (T) 1≤T≤3

SOPNN

Weighting factor (θ) 0≤θ≤1
l,T: integer

1 2 3 4 54

6

8

10

12

14

16
2 ; , 3 ; , 4 ; , 5 ;
Maximal number of inputs to be selected(Max)

Tr
ai

ni
ng

 d
at

a
er

ro
r

Layer
1 2 3 4 54

6

8

10

12

14

16

18
2 ; , 3 ; , 4 ; , 5 ;
Maximal number of inputs to be selected(Max)

Te
st

in
g

da
ta

 e
rr

or

Layer

 (a) PI. (b) EPI.

Fig. 5. Performance index of a GA-based SOPNN
according to the increase in maximal number
of inputs to be selected (θ=0.5).

0

2

4

6

8

10

12

14

16

0 0.25 0.5 0.75 1.0
θ

Tr
ai

ni
ng

 d
at

a
er

ro
r

 , , , ,Layer 1(a) : Layer 2(b) : Layer 3(c) : Layer 4(d) : Layer 5(e) :

a : (1 3 0)
b : (10 11 0)
c : (1 9 20)
d : (10 14 27)
e : (10 18 24)

a : (1 3 0)
b : (11 14 17)
c : (7 30 0)
d : (20 24 27)
e : (23 26 0)

a : (1 3 4)
b : (12 14 29)
c : (2 11 19)
d : (5 9 29)
e : (18 22 0)

a : (1 2 4)
b : (1 9 13)
c : (16 21 23)
d : (16 22 29)
e : (2 12 29)

a : (1 2 3)
b : (15 17 24)
c : (6 17 18)
d : (3 6 29)
e : (9 11 15)

4

6

8

10

12

14

16

18

20

0 0.25 0.5 0.75 1.0
θ

Te
st

in
g

da
ta

 e
rr

or
 , , , ,Layer 1(a) : Layer 2(b) : Layer 3(c) : Layer 4(d) : Layer 5(e) :

 (a) PI. (b) EPI.

Fig. 6. Performance index of GA-based SOPNN
treated as a function of the weighting factor.

1 2 3 4 50

2

4

6

8

10

12

14

16

Layer

Tr
ai

ni
ng

 d
at

a
er

ro
r

 , , , ,θ :0.0(A) : θ :0.25(B) : θ :0.5(C) : θ :0.75(D) : θ :1.0(E) :

A : (1 3 0)
B : (1 3 0)
C : (1 3 4)
D : (1 2 4)
E : (1 2 3)

A : (10 11 0)
B : (11 14 17)
C : (12 14 29)
D : (1 9 13)
E : (15 17 24)

A : (1 9 20)
B : (7 30 0)
C : (2 11 19)
D : (16 21 23)
E : (6 17 18)

A : (10 14 27)
B : (20 24 27)
C : (5 9 29)
D : (16 22 29)
E : (3 6 29)

A : (10 18 24)
B : (23 26 0)
C : (18 22 0)
D : (2 12 29)
E : (9 11 15)

1 2 3 4 54

6

8

10

12

14

16

18

20

Layer

Te
st

in
g

da
ta

 e
rr

or

 , , , ,θ :0.0(A) : θ :0.25(B) : θ :0.5(C) : θ :0.75(D) : θ :1.0(E) :

 (a) PI. (b) EPI.

Fig. 7. Performance index of GA-based SOPNN
according to the increase in the number of
layers.

430 Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh

node having the best output performance in the
current layer. Fig. 8 illustrates the detailed optimal
topologies of the GA-based SOPNN for 3 layers and 5
layers respectively. As shown in Fig. 8, the GA-based
design procedure at each stage (layer) of SOPNN
leads to the selection of preferred nodes (or PNs) with
local characteristics (such as the number of input
variables, the order of the polynomial, and input
variables) available within the SOPNN. In the sequel,
the proposed network enables the architecture to be a
structurally more optimized and flexible network than
the conventional SOPNN. Referring to Fig. 8, we
adhere to the following notation N T

PNn

: ‘PNn’
denotes the nth node (PN) of the corresponding layer,
‘N’ denotes the number of nodes (inputs or PNs)
coming to the corresponding node, and ‘T’ denotes the
polynomial order used in the corresponding node.

Figs. 9-10 show output comparison and identificat-
ion errors for the optimal network architecture
visualized in Fig. 8(b).

Fig. 11 illustrates the optimization process by
visualizing the performance index in successive
generations of the GA-based SOPNN. It also shows
the optimized network architecture (the weighting
factor θ is set at 0. 5 with 5 layers).

Table 3 summarizes the results of comparative
analysis of the proposed model with respect to other
constructs.

5.2. pH neutralization process

To demonstrate the high modeling accuracy of the
GA-based SOPNN, we apply it to a highly nonlinear
pH neutralization consisting of a weak acid and a
strong base. This model can be found in a variety of
practical areas including wastewater treatment,
biotechnology processing, and chemical processing
[19-23]. pH is the measurement of the acidity or
alkalinity of a solution containing a proportion of
water. It is mathematically defined, for diluted
solutions, as the negative decimal logarithm of the
hydrogen ion concentration [H+] in the solution, that is

pH = - log10[H+]. (12)

ŷ

MLSS

WSR

RRSP

PN23

3 2

PN19

2 2

PN11

3 2

PN2

3 3

PN11

3 1

PN12

2 3

PN25

2 1

PN22

1 2

PN21

2 3

DOSP

ŷ

MLSS

WSR

RRSP

PN7

2 2

DOSP

PN23

3 2

PN7

3 2

PN29

3 2

PN22

3 2

PN27

3 2

PN18

3 3

PN22

3 2

PN19

2 2

PN18

3 2

PN17

2 2

PN28

3 3

PN23

3 2

PN21

3 3

PN9

3 2

PN4

2 2

PN2

3 3

PN14

2 2

PN11

3 2

PN10

2 2

PN21

2 3

PN18

2 2

PN17

2 2

PN27

3 3

PN25

2 1

PN22

1 2

PN11

3 1

PN5

2 1

PN2

3 1

PN16

2 2

PN14

2 1

PN12

2 3

PN1

2 3

PN30

3 1

 (a) Optimized SOPNN (b) Optimized SOPNN
with 3 layers (θ=0.5). with 5 layers (θ=0.5).

Fig. 8. Genetically optimized SOPNN architecture
(Max=3).

5 10 15 20 254

6
8

10
12
14

16
18
20
22
24

: Original output
: Model output

Data no.

Tr
ai

ni
ng

 d
at

a
ou

tp
ut

5 10 15 20 250

5

10

15

20

25

: Original output
: Model output

Data no.

Te
st

in
g

da
ta

 o
ut

pu
t

 (a) Training data. (b) Testing data.

Fig. 9. Original output and model output of gas
furnace process (in case of 5 layers and
θ=0.5).

5 10 15 20 25 30 35 40 45 50-6

-4

-2

0

2

4

6
Training data error Testing data error

Data no.

Er
ro

rs

Fig. 10. Error curves of SOPNN (in case of 5 layers

and θ=0.5).

0 100 200 300 400 5005

6

7

8

9

10

11

12

13

14

15

Generation

Tr
ai

ni
ng

 d
at

a
er

ro
r

1st layer 2nd layer 3rd layer 4th layer 5th layer

0 100 200 300 400 5004

6

8

10

12

14

16

18

Generation

Te
st

in
g

da
ta

 e
rr

or

1st layer 2nd layer 3rd layer 4th layer 5th layer

 (a) PI. (b) EPI.

Fig. 11. The optimization process of each
performance index by the Gas.

Table 3. Comparison of performance with other

modeling methods.
Performance indexModel PIs EPIs

Simplified 13.726 16.206Fuzzy model
[15] Linear 6.396 54.233

Simplified 12.403 12.200Hybrid Fuzzy
model [16] Linear 7.157 24.658

Simplified 13.401 8.287Fuzzy set-based
FNN model[17] Linear 12.307 9.828

Simplified 12.943 12.176Fuzzy relation-based
FNN model [18] Linear 10.584 12.108

θ=0.5 (3rd layer) 6.837 8.871Our model
θ=0.5 (5th layer) 5.365 4.852

PIs - performance index on the training data,
EPIs - performance index on the testing data.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 431

431

In a continuously stirred tank reactor (CSTR) [24,25]
the investigated acetic acid (HAC) of concentration Ca
flows into the tank at flow rate Fa, and is neutralized
by sodium hydroxide (NaOH) of concentration Cb that
flows into the tank at rate Fb. The equations of the
CSTR can be described as follows (here we assume
that the tank is perfectly mixed and isothermal, cf.
[24]). The process equations for the CSTR are given
by

()a
a a a b a

Vdw
F C F F W

dt
= − + , (13a)

()b
b b a b b

Vdw
F C F F W

dt
= − + , (13b)

where the constant V is the volume of the content in
the reactor, wa and wb are the concentrations of the
acid and the base, respectively.

The above equation describes how the
concentrations of wa and wb change dynamically over
time subject to the input streams Fa and Fb. To obtain
the pH in the effluent, we need to find a relation
between instantaneous concentrations wa and wb and
pH values. This relationship can be described by a
nonlinear algebraic equation known as the titration or
characteristic curve. Depending on the chemical
species used, the titration curve varies. Here we
consider the case that a weak influent is neutralized by
a strong reagent. The words strong and weak are used
to characterize the degree of ionic dissociation in an
aqueous solution. Strong reagents completely
dissociate into their hydrogen or hydroxyl ions
whereas weak reagents are only partially ionized.

Consider an acetic acid (weak acid) denoted by
HAC being neutralized by a strong base NaOH
(sodium bydroxide) in water. The reactions are

H2O ⇔ H+ + OH-, (14a)
HAC ⇔ H+ + AC, (14b)
NaOH ⇒ Na+ + OH-. (14c)

According to the electroneutrality condition, the sum
of the charges of all ions in the solution must be zero,
i.e.

[Na+]+[H+] = [OH-] + [AC-], (15)

where the symbol [X] denotes the concentration of the
ion X.

On the other hand, the following equilibrium
relationships hold for water and acetic acid:

Ka= [AC-][H+] / [HAC], (16a)
Kw= [H+][OH-], (16b)

where Ka and Kw are the dissociation constants of the
acetic acid and water with Ka=1.76×10-5 and Kw=10-4.
Defining wa=[HAC]+[AC-] as the total acetate and
wb=[Na+] and inserting Eqs. (16a) and (16b) into (15),
we have

[H+]3+[H+]2{ Ka + wb }+[H+]{Ka (wb - wa)- Kw}-KaKw =0. (17)

Using (12), (17) becomes

10 10 0
1 10

w
a

pH pKpH a
b pK pH

W
W −−

−
+ − − =

+
, (18)

Table 4. Parameters and initial values for pH process.
Variables Meaning Initial setting
V
Fa
Fb
Ca
Cb
Ka
Kw
Wa(0)
Wb(0)

Volume of tank
Flow rate of acid
Flow rate of base
Concentration of acid in Fa
Concentration of base in Fb
Acid equilibrium constant
Water equilibrium constant
Concentration of acid
Concentration of base

1000 cc
81 cc/min
515 cc/min
0.32 mole/l
0.05 mole/l
1.76*10-5
1.0*10-14
0.0435 mole/l
0.0432 mole/l

Table 5. Summary of the parameters of the

optimization and computational effort.
 Parameters 1st ~ 5th layer

Maximum generation 100
Total population size 60
Selected population size

(W) 30

Crossover rate 0.65
Mutation rate 0.1

GA

String length 4+3+60
Number of inputs to be

selected (l)
1≤l≤ Max

(3,5,7,10)
Type (T) 1≤T≤3 SOPNN

Weighting factor (θ) 0≤θ≤1
l,T : integer

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer

Tr
ai

ni
ng

 d
at

a
er

ro
r

3 ; , 5 ; , 7 ; , 10 ;
Maximal number of inputs to be selected(Max)

Fig. 12. Performance index of GA-based SOPNN

according to the increase in the maximal
number of inputs to be selected.

432 Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh

where pKa=-log10ka.
We consider the weak acid-strong base neutralization

process described by (13a), (13b) and (18). By fixing
the acid flow-rate Fa (81cc/min) at a specific value, the
process is regarded as a single variable system with
base flow-rate Fb and the pH in the effluent being the

input and output, respectively. The (Fb, ypH) data pairs
were produced by using the process physical model
with the values of the parameters given in Table 4.

The base flow rate Fb was given by

515 51.5sin(2 / 25), 150,bF t for t= + ≤π (19a)
515 25.75sin(2 / 25) 25.75sin(2 /10),

150.
bF t t

for t
= + +

〉

π π

 (19b)

To obtain such data pairs, we applied the Newton-
Raphson method, which is given by

1
()
()

i
i i

i

f pH
pH pH

f pH+ = −
′

. (20)

The system inputs of the GA-based SOPNN structure
consist of the delayed terms of Fb(t) and ypH(t), which
are the input and output of the process, i.e.,

ˆ () ((3), (2), (1), (3),

(2), (1)), (21)
pH b b b pH

pH pH

y t F t F t F t y t

y t y t

= − − − −

− −

ϕ

where ˆ pHy and ypH denote the GA-based SOPNN
model output and the actual process output,
respectively. 500 data pairs are generated from (19a),
(19b), and (20) where the total data are used for
training. To come up with a quantitative evaluation of
the network, we use the standard MSE performance
index of (10).

Table 5 shows a summary of the parameters of the
optimization and computational effort. The GA-based
design procedure is carried out in a similar manner
using the parameters of Table 4.

Fig. 12 depicts the performance index of GA-based
SOPNN according to the increase in the maximal
number of inputs to be selected. The best results for
the network in the 3rd layer are obtained when using
Max=10 with Type 2 (Polynomial order: quadratic)
and 10 node inputs (node number: 2, 9, 10, 12, 18, 19,
21, 27, 28, 29), (that are quantified as PI=0.00019),
The best results for the network in the 5th layer
coming with PI=0.00013 have been reported when
Max=10 with Type 2 (Polynomial order: quadratic)
and 9 node inputs (node inputs: 1, 3, 5, 13, 14, 17, 21,
28, 30).

Figs. 13-14 show output comparison and
identification errors for the optimal network
architecture visualized when Max=10 with Type 2.

Fig. 15 illustrates the optimization process by
visualizing the performance index in successive
generations of the GA-based SOPNN. As shown in
Fig. 15, the variation ratio (slope) of the performance
of the GA-based SOPNN model changes radically at
the 2nd layer. Therefore, to effectively reduce a large

0 50 100 150 200 250 300 350 400 450 500

5

6

7

8

9

10

11

12

Data no.

Tr
ai

ni
ng

 d
at

a
ou

tp
ut

 : Original output : Model output

Fig. 13. Original output and model output of nonlinear

function data.

0 50 100 150 200 250 300 350 400 450 500
-
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Data no.

Er
ro

r

Fig. 14. Error curves of SOPNN.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

Tr
ai

ni
ng

 d
at

a
er

ro
r

1st layer 2nd layer 3rd layer 4th layer 5th layer

Fig. 15. The optimization process of each perfor-

mance index by the genetic algorithms.

Table 6. Comparison of performance with other

modeling methods.
Model PI

USOCPN 0.230 Nie’s
model [26] SSOCPN 0.012

Case 1 0.0015 Basic SOPNN
(15th Layer) Case 2 0.0052

Case 1 0.0039
SOPNN

[7] Modified SOPNN
(10th Layer) Case 2 0.0124

Our model (3rd Layer) 0.00019

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 433

433

number of nodes and avoid a large amount of time-
consuming iteration of SOPNN layers, the stopping
criterion can be taken into consideration up to
maximally the 2nd or 3rd layer.

Table 6 depicts a comparison of identification errors
with previous modeling methods. In the literature [26],
which the unsupervised self-organizing counter-
propagation network algorithm (USOCPN) and
unsupervised self-organizing counter-propagation
network algorithm (SSOCPN) were proposed, the
number of fuzzy rules and mean square errors (MSEs)
were 31 and 0.230, respectively for the case of the
USOCPN, and 34 and 0.012, respectively for the case
of the SSOCPN. Compared with that approach, Table
6 shows that the proposed method is much more
superior.

6. CONCLUSIONS

In this study, the GA-based design procedure of
Self-Organizing Polynomial Neural Networks
(SOPNN) and its design methodology were proposed
to construct optimal model architecture for nonlinear
and complex system modeling. The design metho-
dology comes with hybrid structural optimization and
parametric learning viewed as two phases of modeling
building. That is, the one phase (hybrid structural
optimization) is realized via both GAs and a structural
phase of a self-organizing and an evolutionary
algorithm as the main characteristics of the GMDH
method, while the other phase (parametric
optimization) is carried out by a standard least square
estimation-based learning. The essence of the GA-
based SOPNN lies in polynomial based activation
nodes and network architecture based on the GMDH
and genetically optimized multi-layer perceptrons
(MLPs). Accordingly, the architecture of the network
is not predetermined (as in most existing neural
networks) but becomes dynamically adjusted and
optimized during the development process. The GA-
based design procedure at each stage (layer) of the
SOPNN leads to the selection of these preferred nodes
(or PNs) with local characteristics (such as the number
of input variables, the order of the polynomials, and
input variables) available within the SOPNN. Then,
based on these selections, we build flexible and
optimized architecture of the GA-based SOPNN. The
comprehensive experimental studies involving well-
known datasets (sewage treatment process data and
pH neutralization process) quantify a superb
performance of the network in comparison to the
existing fuzzy and neuro-fuzzy models. First of all, we
could efficiently search for the optimal network
architecture (structurally and parametrically optimized
network) by the design methodology of GA-based
SOPNN in comparison to that of the conventional
SOPNN.

REFERENCES
[1] V. Cherkassky, D. Gehring, and F. Mulier,

“Comparison of adaptive methods for function
estimation from samples,” IEEE Trans. on
Neural Networks, vol. 7, pp. 969-984, July 1996.

[2] J. A. Dicherson and B. Kosko, “Fuzzy function
approximation with ellipsoidal rules,” IEEE
Trans. on Systems, Man and Cybernetics, Part B,
vol. 26, pp. 542-560, August 1996.

[3] A. G. Ivakhnenko, “Polynomial theory of
complex systems,” IEEE Trans. on Systems, Man
and Cybernetics, vol. SMC-1, pp. 364-378, 1971.

[4] A. G. Ivakhnenko and H. R. Madala, Inductive
Learning Algorithms for Complex Systems
Modeling, CRC Press, London, 1994.

[5] A. G. Ivakhnenko and G. A. Ivakhnenko, “The
review of problems solvable by algorithms of the
group method of data handling (GMDH),”
Pattern Recognition and Image Analysis, vol. 5,
no. 4, pp. 527-535, 1995.

[6] A. G. Ivakhnenko, G. A. Ivakhnenko, and J.A.
Muller, “Self-organization of neural networks
with active neurons,” Pattern Recognition and
Image Analysis, vol. 4, no. 2, pp. 185-196, 1994.

[7] S.-K. Oh and W. Pedrycz, “The design of self-
organizing polynomial neural networks,”
Information Science, vol. 141, pp. 237-258, 2002.

[8] S.-K. Oh, W. Pedrycz, and B.-J. Park,
“Polynomial neural networks architecture:
analysis and design,” Computers and Electrical
Engineering, vol. 29, no. 6, pp. 703-725, 2003.

[9] H.-S. Park, B.-J. Park, and S.-K. Oh, “Optimal
design of self-organizing polynomial neural
networks by means of genetic algorithms,”
Journal of the Research Institute of Engineering
Technology Development (in Korean), vol. 22,
pp. 111-121, 2002.

[10] W. Pedrycz and M. Reformat, “Evolutionary
optimization of fuzzy models in fuzzy logic: A
framework for the new millennium,” V.
Dimitrov and V. Korotkich (eds.), Studies in
Fuzziness and Soft Computing, Phsica-Verlag,
vol. 8, pp. 51-67, September 1996.

[11] J. H. Holland, Adaptation in Natural and
Artificial Systems, The University of Michigan
Press, Ann Arbour, 1975.

[12] D. E. Goldberg, Genetic Algorithm in Search,
Optimization & Machine Learning, Addison
Wesley, 1989.

[13] K. A. De Jong, “Are genetic algorithms function
optimizers?,” in Parallel Problem Solving from
Nature 2, Manner, R. and Manderick, B. eds.,
North-Holland, Amsterdam, 1992.

[14] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-
Verlag, Berlin Heidelberg, 1996.

[15] S.-K. Oh and W. Pedrycz, “Identification of

434 Ho-Sung Park, Byoung-Jun Park, Hyun-Ki Kim, and Sung-Kwun Oh

fuzzy systems by means of an auto-tuning
algorithm and its application to nonlinear
systems,” Fuzzy Sets and Systems, vol. 115, no. 2,
pp. 205-230, 2000.

[16] S.-K. Oh, W. Pedrycz, and B.-J. Park, “Hybrid
identification of fuzzy rule-based models,” Int. J.
of Intelligent Systems, vol. 17, no.1, pp. 77-103,
Jan. 2002.

[17] S.-K. Oh, W. Pedrycz, and H.-S. Park, “Hybrid
identification in fuzzy-neural networks,” Fuzzy
Sets and Systems, vol. 138, pp. 399-426, 2003.

[18] S.-K. Oh, W. Pedrycz, and H.-S. Park, “Fuzzy
relation-based neural-networks and their hybrid
identification,” IEEE Trans. on Instrumentation
and Measurement, 2004(submitted).

[19] F. G. Shinskey, pH and pION Control in Proc.
and Waste Streams, Wiley, New York, 1973.

[20] R. C. Hall, and D. E. Seberg, “Modeling and
self-tuning control of a multivariable pH
neutralization process,” Proc. ACC, pp. 1822-
1827, 1989.

[21] T. J. McAvoy, “Time optimal and Ziegler-
Nichols control,” Ind. Eng. Chem. Process Des.
Develop, vol. 11, no. 1, pp. 71-78, January 1972.

[22] G. A. Pajunen, “Comparison of linear and
nonlinear adaptive control of a pH-process,”
IEEE Control Systems Magazine, vol. 7, no. 1,
pp. 39-44, February 1987.

[23] C. L. Karr, and E. J. Gentry, “Fuzzy control of
pH using genetic algorithms,” IEEE Trans. on
Fuzzy Systems, vol. 1, pp. 46-53, 1993.

[24] T. J. McAvoy, E. Hsu, and S. Lowenthal,
“Dynamics of pH in controlled stirred tank
reactor,” Ind. Engrg. Chem. Process Des.
Develop, vol. 11, no. 1, pp. 68-70, January 1972.

[25] T. K. Gustafsson and K. V. Waller, “Dynamic
modeling and reaction invariant control of pH,”
Chem. Engrg. Sci., vol. 38, pp. 389-398, 1983.

[26] J. Nie, A. P. Loh, and C. C. Hang, “Modeling pH
neutralization processes using fuzzy-neural
approaches,” Fuzzy Sets and Systems, vol. 78, pp.
5-22, 1996.

[27] B.-J. Park, W. Pedrycz, and S.-K. Oh, “Fuzzy
polynomial neural networks: hybrid architec-
tures of fuzzy modeling,” IEEE Trans. on Fuzzy
Systems, vol. 10, no. 5, pp 607-621, October
2002.

[28] S.-K. Oh, J. F. Peters, W. Pedrycz, and T.-C. Ahn,
“Genetically optimized rule-based fuzzy
polynomial neural networks: synthesis of
computational intelligence technologies,”
Lecture Notes in Artificial Intelligence, vol. 2639,
pp. 437-444, May 2003.

[29] S.-K. Oh, W. Pedrycz, and B.-J. Park, “Self-
organizing neurofuzzy networks based on
evolutionary fuzzy granulation,” IEEE Trans. on
SMC-A, vol. 33, no. 2, pp. 271-277, March 2003.

[30] S.-K. Oh, Fuzzy Model & Control System by C-
Programming, Naeha Press, 2002.

[31] S.-K. Oh, Computational Intelligence by
Programming focused on Fuzzy, Neural
Networks, and Genetic Algorithms, Naeha Press,
2002.

Ho-Sung Park received his B.S. and
M.S. degrees in Control and
Instrumentation Engineering from
Wonkwang University, Korea in 1999
and 2001, respectively. He is currently
a Ph.D. student at the same institute.
His research interests include fuzzy
and hybrid systems, neurofuzzy

models, genetic algorithms, and computational intelligence.
He is a member of KIEE and ICASE.

Byoung-Jun Park received his B.S.,
M.S., and Ph.D. degrees in Control and
Instrumentation Engineering from
Wonkwang University, Korea in 1998,
2000, and 2003, respectively. His
research interests encompass fuzzy,
neurofuzzy systems, genetic algorithms,
computational intelligence, hybrid

systems, and intelligent control.

Hyun-Ki Kim received his B.S., M.S.,
and Ph.D. degrees in Electrical
Engineering from Yonsei University,
Seoul, Korea, in 1977, 1985 and 1991,
respectively. During 1999-2003, he
worked as Chairman at the Korea
Association of Small Business
Innovation Research. He is currently a

Professor in the Dept. of Electrical Engineering, Suwon
University, Korea. His research interests include system
automation, and intelligent control. He currently serves as a
Chief Editor for the Journal of Korea Association of Small
Business Innovation Research.

Sung-Kwun Oh received his B.S.,
M.S., and Ph.D. degrees in Electrical
Engineering from Yonsei University,
Seoul, Korea, in 1981, 1983 and 1993,
respectively. During 1983-1989, he
worked as the Senior Researcher in the
R&D Lab. of Lucky-Goldstar
Industrial Systems Co., Ltd. He was a

Postdoctoral Fellow in the Department of Electrical and
Computer Engineering at the University of Manitoba,
Canada, from 1996 to 1997. He is currently a Professor in
the School of Electrical, Electronic and Information
Engineering, Wonkwang University, Korea. His research
interests include fuzzy systems, fuzzy-neural networks,
automation systems, advanced computational intelligence,
and intelligent control. He is a member of IEEE. He
currently serves as an Associate Editor for the Korean
Institute of Electrical Engineers (KIEE) and the Institute of
Control, Automation & Systems Engineers (ICASE), Korea.

