* Upcoming papers  
Subject Keyword Abstract Author
Neural Network-based Robust Anti-Sway Control of an Industrial Crane Subjected to Hoisting Dynamics and Uncertain Hydrodynamic Forces

Gyoung-Hahn Kim, Phuong-Tung Pham, Quang Hieu Ngo, and Quoc Chi Nguyen*
International Journal of Control, Automation, and Systems, vol. 19, no. 5, pp.1953-1961, 2021

Abstract : "In this paper, a neural network-based robust anti-sway control is proposed for a crane system transporting an underwater object. A dynamic model of the crane system is developed by incorporating hoisting dynamics, hydrodynamic forces, and external disturbances. Considering the various uncertain factors that interfere with accurate payload positioning in water, neural networks are designed to compensate for unknown parameters and unmodeled dynamics in the formulated problem. The neural network-based estimators are embedded in the anti-sway control algorithm, which improves the control performance against uncertainties. A sliding mode control with an exponential reaching law is developed to suppress the sway motions during underwater transportation. The asymptotic stability of the sliding manifold is proved via Lyapunov analysis. The embedded estimator prevents the conservative gain selection of the sliding mode control, thus reducing the chattering phenomena. Simulation results are provided to verify the effectiveness and robustness of the proposed control method.

Keyword : Anti-sway control, crane control, neural network estimator, sliding mode control, underwater transference.

Download PDF : Click this link

Business License No.: 220-82-01782