* Upcoming papers  
Subject Keyword Abstract Author
An Intelligent Tracking Method for a Maneuvering Target

Bum-Jik Lee/Young-Hoon Joo/Jin Bae Park
International Journal of Control, Automation, and Systems, vol. 1, no. 1, pp.93-100, 2003

Abstract : Accuracy in maneuvering target tracking using multiple models relies upon the suitability of each target motion model to be used. To construct multiple models, the interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require predefined sub-models and predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers. To solve these problems, this paper proposes the GA-based IMM method as an intelligent tracking method for a maneuvering target. In the proposed method, the acceleration input is regarded as an additive process noise, a sub-model is represented as a fuzzy system to compute the time-varying variance of the overall process noise, and, to optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. The simulation results show that the proposed method has a better tracking performance than the AIMM algorithm.

Keyword : Maneuvering target tracking, IMM algorithm, AIMM algorithm, GA-based IMM method, fuzzy system

Business License No.: 220-82-01782